- 📖 Table of Contents
- 📍 Overview
- 📦 Features
- 📂 repository Structure
- ⚙️ Modules
- 🚀 Getting Started
- 📄 License
- 👏 Acknowledgments
ADS-B Signal Classification Based on Deep Learning.
The Project contains the following modules:
- train model
- test model
- deploy model
└── ADS-B_Classification/
├── __asserts__/
│ └── figs/
├── configs/
│ └── config.yaml
├── data_loaders/
│ └── my_ADSB_dl.py
├── deploy/
│ ├── STEP01_torch2onnx.py
│ ├── STEP02_onnx_simplify.py
│ ├── STEP03_onnx_eval.py
│ └── STEP04_onnx2trt.py
├── experiments/
├── infers/
│ └── ADSB_infer.py
├── main_test.py
├── main_train.py
├── models/
│ ├── ADSB_model.py
│ ├── base_model/
│ │ └── resnet1d.py
│ └── LSTM.py
├── trainers/
│ └── ADSB_trainer.py
└── utils/
├── loss_utils.py
├── utils.py
├── utils_common.py
└── utils_visualize.py
Root
File | Summary |
---|---|
main_test.py | Project test entrance |
main_train.py | Project train entrance |
config.yaml | Config file |
my_ADSB_dl.py | Customized dataloader |
STEP01_torch2onnx.py | PyTorch checkpoint to ONNX file |
STEP02_onnx_simplify.py | ONNX file simpl;ify |
STEP03_onnx_eval.py | ONNX file and PyTorch checkpoint evaluation |
STEP04_onnx2trt.py | ONNX file to TensorRT (TODO) |
ADSB_infer.py | Main infer |
ADSB_model.py | Porject model |
ADSB_trainer.py | Main trainer |
loss_utils.py | Loss function utils |
utils.py | Other utils |
utils_common.py | Common utils |
utils_visualize.py | Visualize utils |
Dependencies
Download motion modules and put them under ADS-B_Classification/data/
.
- ADS-B Datasets: Google Drive
- Clone the ADS-B_Classification repository:
git clone https://github.com/FMVPJet/ADS-B_Classification.git
- Change to the project directory:
cd ADS-B_Classification
- Install the dependencies:
pip install -r requirements.txt
customize config.yaml
python main_train.py
python main_test.py
This project is protected under the MIT License. For more details, refer to the LICENSE file.