Skip to content

Commit

Permalink
Merge pull request #327 from FAIRiCUBE/stac-dist-wetness-index-city-o
Browse files Browse the repository at this point in the history
ChangeType.update stac_dist/wetness_index_city_of_luxembourg/wetness_index_city_of_luxembourg.json
  • Loading branch information
mari-s4e authored Nov 18, 2024
2 parents 095c6d5 + 2a91e1b commit 9b39d2f
Showing 1 changed file with 155 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
{
"type": "Feature",
"stac_version": "1.0.0",
"id": "wetness_index_city_of_luxembourg",
"properties": {
"keywords": [
"Topographic wetness index"
],
"license": "CC0-1.0",
"description": "Wetness Index of the City of Luxembourg",
"providers": [],
"dataSource": "https://data.public.lu/fr/datasets/lidar-2019-modele-numerique-de-terrain-mnt/",
"cube:dimensions": {
"x": {
"axis": "x",
"extent": [
72850,
82570
],
"reference_system": "2169",
"type": "spatial",
"unit": "meter",
"step": 10
},
"y": {
"axis": "y",
"extent": [
69590,
82570
],
"reference_system": "2169",
"type": "spatial",
"unit": "meter",
"step": 10
},
"z": {
"extent": [
null,
null
],
"type": "spatial"
},
"time": {
"type": "temporal",
"extent": [
"2019-01-01T00:00Z",
"2019-12-31T00:00Z"
],
"step": "P1Y0M0DT0H0M0S",
"unit": "year"
}
},
"raster:bands": [
{
"band_name": "Topographic wetness index",
"unit": "continuous",
"data_type": "float32",
"nodata": -99999,
"definition": "TWI is a ratio that quantifies the potential for water accumulation in a landscape based on the terrain's slope and upstream contributing area",
"description": "TWI is a ratio that quantifies the potential for water accumulation in a landscape based on the terrain's slope and upstream contributing area"
}
],
"title": "Topographic Wetness Index of the City of Luxembourg",
"datasource_type": "grid",
"area_cover": "5171.66 ha",
"documentation": "https://data.public.lu/fr/datasets/lidar-2019-modele-numerique-de-terrain-mnt/",
"crs": "2169",
"start_datetime": "2019-01-01T00:00Z",
"end_datetime": "2019-12-31T00:00Z",
"personalData": "no personal data",
"provenance_name": "LiDAR 2019 - Digital Terrain Model (DTM)",
"preprocessing": "Calculation of TWI based on the Digital Terrain Model (DTM)",
"source_data": "https://data.public.lu/fr/datasets/lidar-2019-modele-numerique-de-terrain-mnt/",
"access_control": "fairicube account required ",
"datetime": "2019-01-01T00:00Z",
"modification": null,
"provision": null,
"use_case_S4E": "1",
"platform": "Eox"
},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
6.069058507516138,
49.56094657618465
],
[
6.069058507516138,
49.677685246874994
],
[
6.203732162051925,
49.677685246874994
],
[
6.203732162051925,
49.56094657618465
],
[
6.069058507516138,
49.56094657618465
]
]
]
},
"links": [
{
"rel": "root",
"href": "../catalog.json",
"type": "application/json",
"title": "data-access catalog"
},
{
"rel": "parent",
"href": "../catalog.json",
"type": "application/json",
"title": "data-access catalog"
},
{
"example:container": false,
"example:language": "Python",
"type": "text/x-python",
"title": "AWS S3 bucket API",
"description": "The script shows how to open a gridded dataset stored on an S3 Bucket as an xarray DataSet",
"href": "https://github.com/FAIRiCUBE/common-code/blob/main/access_data_apis/access_s3_bucket.py",
"rel": "example"
}
],
"assets": {
"twi_2019_10m_b1": {
"href": "https://hub-fairicube0.s3.eu-central-1.amazonaws.com/data/d012_luxembourg/twi_2019_10m_b1.tif",
"roles": [
"data"
]
},
"twi_2019_10m_b1_viz": {
"href": "https://hub-fairicube0.s3.eu-central-1.amazonaws.com/data/web/luxembourg/twi_2019_10m_b1_COG.tif",
"roles": [
"data"
]
}
},
"bbox": [
6.069058507516138,
49.56094657618465,
6.203732162051925,
49.677685246874994
],
"stac_extensions": [
"https://stac-extensions.github.io/raster/v1.1.0/schema.json",
"https://stac-extensions.github.io/datacube/v2.0.0/schema.json"
]
}

0 comments on commit 9b39d2f

Please sign in to comment.