Skip to content

[ICCV 2025] Official implementation of the paper: REPA-E: Unlocking VAE for End-to-End Tuning of Latent Diffusion Transformers

License

Notifications You must be signed in to change notification settings

End2End-Diffusion/REPA-E

Repository files navigation

REPA-E: Unlocking VAE for End-to-End Tuning of Latent Diffusion Transformers

Xingjian Leng1*·Jaskirat Singh1*·Yunzhong Hou1·Zhenchang Xing2·Saining Xie3·Liang Zheng1

1 Australian National University   2Data61-CSIRO   3New York University  
*Project Leads  

🌐 Project Page🤗 Models📃 Paper

PWC

Overview

We address a fundamental question: Can latent diffusion models and their VAE tokenizer be trained end-to-end? While training both components jointly with standard diffusion loss is observed to be ineffective — often degrading final performance — we show that this limitation can be overcome using a simple representation-alignment (REPA) loss. Our proposed method, REPA-E, enables stable and effective joint training of both the VAE and the diffusion model.

REPA-E significantly accelerates training — achieving over 17× speedup compared to REPA and 45× over the vanilla training recipe. Interestingly, end-to-end tuning also improves the VAE itself: the resulting E2E-VAE provides better latent structure and serves as a drop-in replacement for existing VAEs (e.g., SD-VAE), improving convergence and generation quality across diverse LDM architectures. Our method achieves state-of-the-art FID scores on ImageNet 256×256: 1.26 with CFG and 1.83 without CFG.

News and Updates

[2025-04-15] Initial Release with pre-trained models and codebase.

Getting Started

1. Environment Setup

To set up our environment, please run:

git clone https://github.com/REPA-E/REPA-E.git
cd REPA-E
conda env create -f environment.yml -y
conda activate repa-e

2. Prepare the training data

Download and extract the training split of the ImageNet-1K dataset. Once it's ready, run the following command to preprocess the dataset:

python preprocessing.py --imagenet-path /PATH/TO/IMAGENET_TRAIN

Replace /PATH/TO/IMAGENET_TRAIN with the actual path to the extracted training images.

3. Train the REPA-E model

To train the REPA-E model, you first need to download the following pre-trained VAE checkpoints:

Recommended directory structure:

pretrained/
├── invae/
├── sdvae/
└── vavae/

Once you've downloaded the VAE checkpoint, you can launch REPA-E training with:

accelerate launch train_repae.py \
    --max-train-steps=400000 \
    --report-to="wandb" \
    --allow-tf32 \
    --mixed-precision="fp16" \
    --seed=0 \
    --data-dir="data" \
    --output-dir="exps" \
    --batch-size=256 \
    --path-type="linear" \
    --prediction="v" \
    --weighting="uniform" \
    --model="SiT-XL/2" \
    --checkpointing-steps=50000 \
    --loss-cfg-path="configs/l1_lpips_kl_gan.yaml" \
    --vae="f8d4" \
    --vae-ckpt="pretrained/sdvae/sdvae-f8d4.pt" \
    --disc-pretrained-ckpt="pretrained/sdvae/sdvae-f8d4-discriminator-ckpt.pt" \
    --enc-type="dinov2-vit-b" \
    --proj-coeff=0.5 \
    --encoder-depth=8 \
    --vae-align-proj-coeff=1.5 \
    --bn-momentum=0.1 \
    --exp-name="sit-xl-dinov2-b-enc8-repae-sdvae-0.5-1.5-400k"
Click to expand for configuration options

Then this script will automatically create the folder in exps to save logs and checkpoints. You can adjust the following options:

  • --output-dir: Directory to save checkpoints and logs
  • --exp-name: Experiment name (a subfolder will be created under output-dir)
  • --vae: Choose between [f8d4, f16d32]
  • --vae-ckpt: Path to a provided or custom VAE checkpoint
  • --disc-pretrained-ckpt: Path to a provided or custom VAE discriminator checkpoint
  • --models: Choose from [SiT-B/2, SiT-L/2, SiT-XL/2, SiT-B/1, SiT-L/1, SiT-XL/1]. The number indicates the patch size. Select a model compatible with your VAE architecture.
  • --enc-type: [dinov2-vit-b, dinov2-vit-l, dinov2-vit-g, dinov1-vit-b, mocov3-vit-b, mocov3-vit-l, clip-vit-L, jepa-vit-h, mae-vit-l]
  • --encoder-depth: Any integer from 1 up to the full depth of the selected encoder
  • --proj-coeff: REPA-E projection coefficient for SiT alignment (float > 0)
  • --vae-align-proj-coeff: REPA-E projection coefficient for VAE alignment (float > 0)
  • --bn-momentum: Batchnorm layer momentum (float)

4. Use REPA-E Tuned VAE (E2E-VAE) for Accelerated Training and Better Generation

This section shows how to use the REPA-E fine-tuned VAE (E2E-VAE) in latent diffusion training. E2E-VAE acts as a drop-in replacement for the original VAE, enabling significantly accelerated generation performance. You can either download a pre-trained VAE or extract it from a REPA-E checkpoint.

Step 1: Obtain the fine-tuned VAE from REPA-E checkpoints:

  • Option 1: Download pre-trained REPA-E VAEs directly from Hugging Face:

    Recommended directory structure:

    pretrained/
    ├── e2e-sdvae/
    ├── e2e-invae/
    └── e2e-vavae/
    
  • Option 2: Extract the VAE from a full REPA-E checkpoint manually:

    python save_vae_weights.py \
        --repae-ckpt pretrained/sit-repae-vavae/checkpoints/0400000.pt \
        --vae-name e2e-vavae \
        --save-dir exps

Step 2: Cache latents to enable fast training:

accelerate launch --num_machines=1 --num_processes=8 cache_latents.py \
    --vae-arch="f16d32" \
    --vae-ckpt-path="pretrained/e2e-vavae/e2e-vavae-400k.pt" \
    --vae-latents-name="e2e-vavae" \
    --pproc-batch-size=128

Step 3: Train the SiT generation model using the cached latents:

accelerate launch train_ldm_only.py \
    --max-train-steps=4000000 \
    --report-to="wandb" \
    --allow-tf32 \
    --mixed-precision="fp16" \
    --seed=0 \
    --data-dir="data" \
    --batch-size=256 \
    --path-type="linear" \
    --prediction="v" \
    --weighting="uniform" \
    --model="SiT-XL/1" \
    --checkpointing-steps=50000 \
    --vae="f16d32" \
    --vae-ckpt="pretrained/e2e-vavae/e2e-vavae-400k.pt" \
    --vae-latents-name="e2e-vavae" \
    --learning-rate=1e-4 \
    --enc-type="dinov2-vit-b" \
    --proj-coeff=0.5 \
    --encoder-depth=8 \
    --output-dir="exps" \
    --exp-name="sit-xl-1-dinov2-b-enc8-ldm-only-e2e-vavae-0.5-4m"

For details on the available training options and argument descriptions, refer to Section 3.

5. Generate samples and run evaluation

You can generate samples and save them as .npz files using the following script. Simply set the --exp-path and --train-steps corresponding to your trained model (REPA-E or Traditional LDM Training).

torchrun --nnodes=1 --nproc_per_node=8 generate.py \
    --num-fid-samples 50000 \
    --path-type linear \
    --mode sde \
    --num-steps 250 \
    --cfg-scale 1.0 \
    --guidance-high 1.0 \
    --guidance-low 0.0 \
    --exp-path pretrained/sit-ldm-e2e-vavae \
    --train-steps 4000000
Click to expand for sampling options

You can adjust the following options for sampling:

  • --path-type linear: Noise schedule type, choose from [linear, cosine]
  • --mode: Sampling mode, [ode, sde]
  • --num-steps: Number of denoising steps
  • --cfg-scale: Guidance scale (float ≥ 1), setting it to 1 disables classifier-free guidance (CFG)
  • --guidance-high: Upper guidance interval (float in [0, 1])
  • --guidance-low: Lower guidance interval (float in [0, 1], must be < --guidance-high)
  • --exp-path: Path to the experiment directory
  • --train-steps: Training step of the checkpoint to evaluate

You can then use the ADM evaluation suite to compute image generation quality metrics, including gFID, sFID, Inception Score (IS), Precision, and Recall.

Quantitative Results

Tables below report generation performance using gFID on 50k samples, with and without classifier-free guidance (CFG). We compare models trained end-to-end with REPA-E and models using a frozen REPA-E fine-tuned VAE (E2E-VAE). Lower is better. All linked checkpoints below are hosted on our 🤗 Hugging Face Hub. To reproduce these results, download the respective checkpoints to the pretrained folder and run the evaluation script as detailed in Section 5.

A. End-to-End Training (REPA-E)

Tokenizer Generation Model Epochs gFID-50k ↓ gFID-50k (CFG) ↓
SD-VAE* SiT-XL/2 80 4.07 1.67a
IN-VAE* SiT-XL/1 80 4.09 1.61b
VA-VAE* SiT-XL/1 80 4.05 1.73c

* The "Tokenizer" column refers to the initial VAE used for joint REPA-E training. The final (jointly optimized) VAE is bundled within the generation model checkpoint.

Click to expand for CFG parameters
  • a: --cfg-scale=2.2, --guidance-low=0.0, --guidance-high=0.65
  • b: --cfg-scale=1.8, --guidance-low=0.0, --guidance-high=0.825
  • c: --cfg-scale=1.9, --guidance-low=0.0, --guidance-high=0.825

B. Traditional Latent Diffusion Model Training (Frozen VAE)

Tokenizer Generation Model Method Epochs gFID-50k ↓ gFID-50k (CFG) ↓
SD-VAE SiT-XL/2 SiT 1400 8.30 2.06
SD-VAE SiT-XL/2 REPA 800 5.90 1.42
VA-VAE LightningDiT-XL/1 LightningDiT 800 2.17 1.36
E2E-VAVAE (Ours) SiT-XL/1 REPA 800 1.83 1.26

In this setup, the VAE is kept frozen, and only the generator is trained. Models using our E2E-VAE (fine-tuned via REPA-E) consistently outperform baselines like SD-VAE and VA-VAE, achieving state-of-the-art performance when incorporating the REPA alignment objective.

Click to expand for CFG parameters
  • : --cfg-scale=2.5, --guidance-low=0.0, --guidance-high=0.75

Acknowledgement

This codebase builds upon several excellent open-source projects, including:

We sincerely thank the authors for making their work publicly available.

📚 Citation

If you find our work useful, please consider citing:

@article{leng2025repae,
  title={REPA-E: Unlocking VAE for End-to-End Tuning with Latent Diffusion Transformers},
  author={Xingjian Leng and Jaskirat Singh and Yunzhong Hou and Zhenchang Xing and Saining Xie and Liang Zheng},
  year={2025},
  journal={arXiv preprint arXiv:2504.10483},
}

About

[ICCV 2025] Official implementation of the paper: REPA-E: Unlocking VAE for End-to-End Tuning of Latent Diffusion Transformers

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages