Skip to content

AI4EO Challenge BiDS 2023 - Building Sustainability: Using AI for Estimating Construction Year from multi-modal street-view - EO dataset

Notifications You must be signed in to change notification settings

ESA-PhiLab/AI4EO-Challenge-Building-Sustainability

Repository files navigation

AI4EO-Challenge-Building-Sustainability

AI4EO Challenge BiDS 2023 - Building Sustainability: Using AI for Estimating Construction Year from multi-modal street-view - EO dataset

The challenge is: (7) in http://www.bigdatafromspace2023.org/satellite-events - Also, in: http://ai4eo.eu

Organisers and Instructors: Nicolas Longepe (ESA, Phi-lab), Nikolaos Dionelis (ESA, Phi-lab), Bertrand Le Saux (ESA, Phi-lab); Enrico Ubaldi (MindEarth); Nika Oman Kadunc (Sinergise), Devis Peressutti (Sinergise); Annekatrien Debien (SpaceTech Partners); Mattia Marconcini (MindEarth), Alessandra Feliciotti (MindEarth)

Estimating the Construction Period of Buildings from multi-modal street-view - EO dataset

AI4EO Challenge: https://ai4eo.eu

Dataset: http://www.eotdl.com/datasets/AI4EO-MapYourCity

Website: https://platform.ai4eo.eu/

Video for the contest: Video

LinkedIn: Post

GitHub webpage: http://github.com/AI4EO/MapYourCity

How to cite:

"AI4EO - Building Sustainability: Using Artificial Intelligence for Estimating Construction Year from multi-modal street-view - EO dataset [Challenge]," Nicolas Longepe, Bertrand Le Saux, Nikolaos Dionelis, Enrico Ubaldi, Nika Oman Kadunc, Devis Peressutti, Annekatrien Debien, Mattia Marconcini, Alessandra Feliciotti, Big Data from Space (BiDS) 2023 Satellite Event, November 2023.

Online: http://www.bigdatafromspace2023.org/satellite-events, http://ai4eo.eu

About

AI4EO Challenge BiDS 2023 - Building Sustainability: Using AI for Estimating Construction Year from multi-modal street-view - EO dataset

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published