Releases: EAddario/llama.cpp
Releases · EAddario/llama.cpp
b6123
cuda: refactored ssm_scan and use CUB (#13291) * cuda: refactored ssm_scan to use CUB * fixed compilation error when when not using CUB * assign L to constant and use size_t instead of int * deduplicated functions * change min blocks per mp to 1 * Use cub load and store warp transpose * suppress clang warning
b6121
gguf-py : add Numpy MXFP4 de/quantization support (#15111) * gguf-py : add MXFP4 de/quantization support * ggml-quants : handle zero amax for MXFP4
b6109
CUDA: GEMM for FP32/FP16/BF16 and ne11 <= 16 (#15131) * CUDA: GEMM for FP32/FP16/BF16 and ne11 <= 16
b6096
llama : add gpt-oss (#15091) * oai moe * compat with new checkpoint * add attn sink impl * add rope scaling yarn * logits match with latest transformers code * wip chat template * rm trailing space * use ggml_scale_bias * rm redundant is_swa_all * convert interleaved gate_up * graph : fix activation function to match reference (#7) * vocab : handle o200k_harmony special tokens * ggml : add attention sinks support (#1) * llama : add attn sinks * ggml : add attn sinks * cuda : add attn sinks * vulkan : add support for sinks in softmax remove unnecessary return * ggml : add fused swiglu_oai op (#11) * ggml : add fused swiglu_oai op * Update ggml/src/ggml-cpu/ops.cpp Co-authored-by: Georgi Gerganov <[email protected]> * update CUDA impl * cont : metal impl * add vulkan impl * test-backend-ops : more test cases, clean up * llama : remove unfused impl * remove extra lines --------- Co-authored-by: Georgi Gerganov <[email protected]> --------- Co-authored-by: slaren <[email protected]> * repack mxfp4 upon conversion * clean up a bit * enable thinking * add quick hack to render only some special tokens * fix bf16 conversion * remove vocab hack * webui ok * support chat parsing for gpt-oss * fix webui * direct mapping mxfp4, FINALLY * force using mxfp4 * properly use lazy tensor * ggml : add mxfp4 ggml : use e8m0 conversion instead of powf Co-authored-by: Diego Devesa <[email protected]> change kvalues_mxfp4 table to match e2m1 (#6) metal : remove quantization for now (not used) cuda : fix disabled CUDA graphs due to ffn moe bias vulkan : add support for mxfp4 cont : add cm2 dequant * ggml : add ggml_add_id (#13) * ggml : add ggml_add_id * add cuda impl * llama : add weight support check for add_id * perf opt * add vulkan impl * rename cuda files * add metal impl * allow in-place ggml_add_id * llama : keep biases on CPU with --cpu-moe * llama : fix compile error ggml-ci * cuda : add fallback for __nv_cvt_e8m0_to_bf16raw ggml-ci * cleanup ggml-ci * sycl : fix supports_op for MXFP4 ggml-ci * fix Unknown reasoning format * ggml-cpu : fix AVX build ggml-ci * fix hip build ggml-ci * cuda : add mxfp4 dequantization support for cuBLAS ggml-ci * ggml-cpu : fix mxfp4 fallback definitions for some architectures ggml-ci * cuda : fix version required for __nv_cvt_e8m0_to_bf16raw --------- Co-authored-by: Xuan Son Nguyen <[email protected]> Co-authored-by: slaren <[email protected]>
b6082
vulkan: fix build when using glslang that does not support coopmat2 (…
b6039
opencl: add `mul_mat_f32_f32_l4_lm` and `mul_mat_f16_f32_l4_lm` (#14809)
b6037
server : add support for `embd_normalize` parameter (#14964) This commit adds support for the `embd_normalize` parameter in the server code. The motivation for this is that currently if the server is started with a pooling type that is not `none`, then Euclidean/L2 normalization will be the normalization method used for embeddings. However, this is not always the desired behavior, and users may want to use other normalization (or none) and this commit allows that. Example usage: ```console curl --request POST \ --url http://localhost:8080/embedding \ --header "Content-Type: application/json" \ --data '{"input": "Hello world today", "embd_normalize": -1} ```
b6020
CUDA: add roll (#14919) * CUDA: add roll * Make everything const, use __restrict__
b6005
vulkan: add ops docs (#14900)
b5996
CANN: Implement GLU ops (#14884) Implement REGLU, GEGLU, SWIGLU ops according to #14158