Skip to content
/ CSI Public

CSI Project,DL net for paper,use python and tensorflow

Notifications You must be signed in to change notification settings

DmrfCoder/CSI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Oct 13, 2018
8fb9384 · Oct 13, 2018
Sep 12, 2018
Sep 29, 2018
Oct 13, 2018
Sep 7, 2018
Sep 7, 2018
Sep 7, 2018
Oct 13, 2018
Sep 26, 2018
Sep 26, 2018
Sep 29, 2018
Sep 29, 2018
Sep 29, 2018
Sep 12, 2018
Oct 13, 2018

Repository files navigation

CSI

Deep DeepCount

LSTM--->CNN-->FC-->Softmax

LSTM

Input dimension:time_360

one layer

Units number:N=64

Output dimension time_N_1

CNN

Two CNN blocks each block contains filter and max pooling components

first filter

  • cnn

input dimision:200_64

so the time is 200 ?

6 filters

kernel size:5_5

stride:1_1

  • max pool:

size:2_2 stride:2_2

output:98_30_6

second filter

  • cnn

10 filters

kernel size:5_3

stride:3*3

  • max pool

kernel size:1

stride:1

del this max pool?

out put:32_10_10

FC

Three layers

Input:32_10_10(flat to 3200*1)

  • 1000
  • 200
  • 5

output:5_1

Softmax

5 units

Data Processing

Algorithm

  • Amplitude Noise Removal

使用加权平均算法对振幅进行降噪,m设置为100

  • Phase Sanitization

首先对原始phase数据(180--->6*30) unwrap,然后计算出every subcarrier的均值y,利用y和x:[0:Sub-1]进行线性拟合(linear fit),最终算出calibrated phase value 并返回.

Code

  • DataProcess

使用weight moving等算法对原始数据进行处理,得到净数据

  • Normalize(已经在上一步进行了归一化处理)

对净数据进行归一化处理

经过以上两步处理得到fixed、open、semi三个文件夹下的数据文件夹,每个数据文件夹下的数据都是N×360的且已经做过归一化处理

Comparative Experiment

在两个方面做两组对比实验:

  • Only Amplitude(Without P)
  • Only Phase(Without A)
  • Without Amplitude noise removal but with Phase noise removal(Without A)
  • With Amplitude noise removal but without Phase noise removal(Without P)
  • Amplitude with noise removal and Phase with noise removal(With P*A)
  • Amplitude without noise removal and Phase without noise removal(Raw Data)

基于此,数据集应有如下几种:

  • Amplitude with noise removal

  • Phase with noise removal

  • Amplitude without noise removal (原始数据就是,但是需要将小数据集拼接成一个数据集)

  • Phase without noise removal (原始数据就是,但是需要将小数据集拼接成一个数据集)

使用以上四个数据集,组合成以下数据集进行训练:

  • Amplitude without noise removal&Phase with noise removal

  • Amplitude with noise removal&Phase without noise removal

  • Amplitude with noise removal&Phase with noise removal

  • Amplitude without noise removal&Phase without noise removal

另外使用另一个网络对如下数据集进行训练:

  • Amplitude with noise removal

  • Phase with noise removal

新网络的改进策略是讲原来的360统一换成180,切片长度和Units number不变,这样LSTM的输出维度就不变,这样CNN部分就不用修改。

About

CSI Project,DL net for paper,use python and tensorflow

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published