-
Notifications
You must be signed in to change notification settings - Fork 26
ubuntu 20.04 LTS fresh install guide
Hello!
Another cookbook entry on how to install your freshly installed 20.04 LTS system for DLC use! Namely, CUDA, drivers, Docker, and anaconda!
sudo apt install gcc
then:
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda-repo-ubuntu2004-11-3-local_11.3.1-465.19.01-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2004-11-3-local_11.3.1-465.19.01-1_amd64.deb
sudo apt-key add /var/cuda-repo-ubuntu2004-11-3-local/7fa2af80.pub
sudo apt-get update
sudo apt-get -y install cuda
Then:
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
sudo ubuntu-drivers autoinstall
then:
reboot
re-open terminal and check gcc version:
gcc --version
output:
gcc --version
gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Then finish installation:
sudo apt install nvidia-cuda-toolkit gcc-9
Then check:
nvcc --version
All set! If error messages, read them carefully as they often tell you how to fix it, or what to google :D
Now you can see CUDA, DRIVER, GPU(s):
nvidia-smi
output:
nvidia-smi
Tue Jun 22 18:46:26 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 465.19.01 Driver Version: 465.19.01 CUDA Version: 11.3 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... On | 00000000:0B:00.0 On | N/A |
| 0% 46C P8 11W / 200W | 252MiB / 8116MiB | 5% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
gnupg \
lsb-release
add key: curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg
echo \
"deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
Then:
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io
some clean up:
sudo apt autoremove
now you can run sudo docker run hello-world
and get:
Hello from Docker!
This message shows that your installation appears to be working correctly.
To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.
To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash
Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/
For more examples and ideas, visit:
https://docs.docker.com/get-started/
Click here to get the ubuntu/linux package: https://www.anaconda.com/products/individual#linux
this downloads a file, save it (I save into downloads)
then cd Downloads
:
and run:
bash Anaconda3-2021.05-Linux-x86_64.sh
and you get:
Welcome to Anaconda3 2021.05
In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue
>>>
Follow prompts!
Given this is a totally fresh install, here are a few things that I also needed: sudo apt install libcanberra-gtk-module libcanberra-gtk3-module
Then I proceeded below:
I grab the conda file from the website at www.deeplabcut.org. Simply click to download (DEEPLABCUT). For me, this goes into Downloads.
So, I open a terminal, cd Downloads
, and then run: conda env create -f DEEPLABCUT.yaml
Follow prompts!
Troubleshooting: Note, if you get a failed build due to wxPython, i.e.:
ERROR: Command errored out with exit status 1: /home/mackenzie/anaconda3/envs/DLC-GPU/bin/python -u -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-0jsmkrr1/wxpython_aeff462b2060421a9cf65df55f63a126/setup.py'"'"'; __file__='"'"'/tmp/pip-install-0jsmkrr1/wxpython_aeff462b2060421a9cf65df55f63a126/setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools import setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record /tmp/pip-record-pzy9q5u2/install-record.txt --single-version-externally-managed --compile --install-headers /home/mackenzie/anaconda3/envs/DLC-GPU/include/python3.7m/wxpython Check the logs for full command output.
failed
CondaEnvException: Pip failed
remove conda env: conda remove --name DLC-GPU --all
, open the DLC-GPU.yaml file (any text editor!) and change deeplabcut[gui]
to deeplabcut
. Then run: conda env create -f DLC-GPU.yaml
again...
then you will get:
Successfully uninstalled decorator-5.0.9
Successfully installed PyWavelets-1.1.1 absl-py-0.13.0 astor-0.8.1 bayesian-optimization-1.2.0 chardet-4.0.0 click-8.0.1 cycler-0.10.0 cython-0.29.23 decorator-4.4.2 deeplabcut-2.1.10.4 filterpy-1.4.5 gast-0.2.2 google-pasta-0.2.0 grpcio-1.38.1 h5py-2.10.0 idna-2.10 imageio-2.9.0 imageio-ffmpeg-0.4.4 imgaug-0.4.0 intel-openmp-2021.2.0 joblib-1.0.1 keras-applications-1.0.8 keras-preprocessing-1.1.2 kiwisolver-1.3.1 llvmlite-0.34.0 markdown-3.3.4 matplotlib-3.1.3 moviepy-1.0.1 msgpack-1.0.2 msgpack-numpy-0.4.7.1 networkx-2.5.1 numba-0.51.1 numexpr-2.7.3 numpy-1.17.5 opencv-python-4.5.2.54 opencv-python-headless-3.4.9.33 opt-einsum-3.3.0 pandas-1.2.5 patsy-0.5.1 pillow-8.2.0 proglog-0.1.9 protobuf-3.17.3 psutil-5.8.0 pytz-2021.1 pyyaml-5.4.1 requests-2.25.1 ruamel.yaml-0.17.9 ruamel.yaml.clib-0.2.2 scikit-image-0.18.1 scikit-learn-0.24.2 scipy-1.7.0 statsmodels-0.12.2 tables-3.6.1 tabulate-0.8.9 tensorboard-1.15.0 tensorflow-estimator-1.15.1 tensorflow-gpu-1.15.5 tensorpack-0.9.8 termcolor-1.1.0 threadpoolctl-2.1.0 tifffile-2021.6.14 tqdm-4.61.1 urllib3-1.26.5 werkzeug-2.0.1 wrapt-1.12.1
done
#
# To activate this environment, use
#
# $ conda activate DLC-GPU
#
# To deactivate an active environment, use
#
# $ conda deactivate
Activate! conda activate DLC-GPU
and then run: conda install -c conda-forge wxpython
... after this finishes, run: pip install deeplabcut[gui]
Now you might get some warnings, but for me it was then totally fine to run python -m deeplabcut
which launches the DLC GUI!