Skip to content

Data-Mining-HSE/fake_news_detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fake news detection

How to run training

  1. Install dependencies
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
  1. Set PYTHONPATH variable
export PYTHONPATH=$(pwd)
  1. Download dataset from Kaggle Place them into ./dataset folder
  1. Run training pipeline via command below
python3 script_train.py \
    --device cuda \
    --fake-path "./dataset/Fake.csv" \
    --true-path "./dataset/True.csv" \
    --cache-folder "./cache/" \
    --batch-size 32 \
    --epoches 50 \
    --last-states 1 \
    --arch deep_normalized_class_bert\
    --optim adam

Supported models

  1. Classification Bert Model
  2. Classification Bert Model with batch normalization
  3. Classification Bert Model with batch normalization and hidden linear layer

Run script_train.py -h to get help

About

The Bert-based model for detecting fake news

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •