Pandas Query Generator (pqg) is a tool designed to help users generate synthetic pandas queries for training machine learning models that estimate query execution costs or predict cardinality.
The distributed Python package is called pqg, and has only been tested on a unix-based system.
Web interface showing query statistics after generation | Generated query output and execution results with the CLI |
You can install the query generator using pip, the Python package manager:
pip install pqg
Alternatively, you can check out the hosted web playground if you're interested in generating queries fast with little setup.
The query generator exposes both a command-line tool and library interface.
Below is the standard output of pqg --help
, which elaborates on the various
command-line arguments the tool accepts:
usage: pqg [--disable-multi-processing] [--ensure-non-empty] [--filter] [--groupby-aggregation-probability] [--max-groupby-columns] [--max-merges] [--max-projection-columns] [--max-selection-conditions] [--multi-line] --num-queries [--output-file] [--projection-probability] --schema [--selection-probability] [--sort] [--verbose]
Pandas Query Generator CLI
options:
-h --help Show this help message and exit
--disable-multi-processing Generate and execute queries in a consecutive fashion (default: False)
--ensure-non-empty Ensure generated queries return a non-empty result set when executed on sample data (default: False)
--filter Filter generated queries by specific criteria
--groupby-aggregation-probability Probability of including groupby aggregation operations (default: 0.5)
--max-groupby-columns Maximum number of columns in group by operations (default: 5)
--max-merges Maximum number of table merges allowed (default: 2)
--max-projection-columns Maximum number of columns to project (default: 5)
--max-selection-conditions Maximum number of conditions in selection operations (default: 5)
--multi-line Format queries on multiple lines (default: False)
--num-queries num_queries The number of queries to generate
--output-file The name of the file to write the results to
--projection-probability Probability of including projection operations (default: 0.5)
--schema schema Path to the relational schema JSON file
--selection-probability Probability of including selection operations (default: 0.5)
--sort Whether or not to sort the queries by complexity (default: False)
--verbose Print extra generation information and statistics (default: False)
The required options, as shown, are --num-queries
and --schema
. The
--num-queries
option simply instructs the program to generate a certain amount
of queries.
The --schema
option is a pointer to a JSON file path that describes
meta-information about the data we're generating queries for.
A sample schema looks like this:
{
"entities": {
"customer": {
"primary_key": "C_CUSTKEY",
"properties": {
"C_CUSTKEY": { "type": "int", "min": 1, "max": 1000 },
"C_NAME": { "type": "string", "starting_character": ["A", "B", "C"] },
"C_STATUS": { "type": "enum", "values": ["active", "inactive"] }
},
"foreign_keys": {}
},
"order": {
"primary_key": "O_ORDERKEY",
"properties": {
"O_ORDERKEY": { "type": "int", "min": 1, "max": 5000 },
"O_CUSTKEY": { "type": "int", "min": 1, "max": 1000 },
"O_TOTALPRICE": { "type": "float", "min": 10.0, "max": 1000.0 },
"O_ORDERSTATUS": {
"type": "enum",
"values": ["pending", "completed", "cancelled"]
}
},
"foreign_keys": {
"O_CUSTKEY": ["C_CUSTKEY", "customer"]
}
}
}
}
This file can be found in /examples/customer/schema.json
, generate a few
queries from this schema with pqg --num-queries 100 --schema examples/customer/schema.json --verbose
.
Other example schema files can be found under the /examples
directory.
We expose various structures that make it easy to generate queries fast:
from pqg import Generator, GenerateOptions, Schema, QueryStructure, QueryPool, QueryFilter
# Assumes `schema.json` exists and conforms to the schema format
schema = Schema.from_file('schema.json')
query_structure = QueryStructure(
groupby_aggregation_probability=0.5,
max_groupby_columns=4,
max_merges=10,
max_projection_columns=5,
max_selection_conditions=10,
projection_probability=0.5,
selection_probability=0.5
)
generator = Generator(schema, query_structure)
# Generate 1000 queries
generate_options = GenerateOptions(num_queries=1000)
query_pool: QueryPool = generator.generate(generate_options)
# Filter out queries with non-empty result sets
query_pool.filter(QueryFilter.NON_EMPTY)
# Sort queries by complexity
query_pool.sort()
# Output each query
print(*query_pool, sep='\n\n')
Comprehensive internal documentation is generated using the sphinx Python package, and a live instance is hosted alongside the web playground.
Check out the paper in the docs folder or watch the demo for more information!
This version of the Pandas Query Generator is based off of the thorough research work of previous students of COMP 400 at McGill University, namely Ege Satir, Hongxin Huo and Dailun Li.