Releases can be found here - https://github.com/DDNStorage/exa-csi-driver/releases
CSI driver version | EXAScaler client version | EXA Scaler server version |
---|---|---|
>=v2.3.0 | >=2.14.0-ddn182 | >=6.3.2 |
Feature | Feature Status | CSI Driver Version | CSI Spec Version | Kubernetes Version | Openshift Version |
---|---|---|---|---|---|
Static Provisioning | GA | >= 1.0.0 | >= 1.0.0 | >=1.18 | >=4.13 |
Dynamic Provisioning | GA | >= 1.0.0 | >= 1.0.0 | >=1.18 | >=4.13 |
RW mode | GA | >= 1.0.0 | >= 1.0.0 | >=1.18 | >=4.13 |
RO mode | GA | >= 1.0.0 | >= 1.0.0 | >=1.18 | >=4.13 |
Expand volume | GA | >= 1.0.0 | >= 1.1.0 | >=1.18 | >=4.13 |
StorageClass Secrets | GA | >= 1.0.0 | >=1.0.0 | >=1.18 | >=4.13 |
Mount options | GA | >= 1.0.0 | >= 1.0.0 | >=1.18 | >=4.13 |
Topology | GA | >= 2.0.0 | >= 1.0.0 | >=1.17 | >=4.13 |
Snapshots | GA | >= 2.2.6 | >= 1.0.0 | >=1.17 | >=4.13 |
Exascaler Hot Nodes | GA | >= 2.3.0 | >= 1.0.0 | >=1.18 | Not supported yet |
Access mode | Supported in version |
---|---|
ReadWriteOnce | >=1.0.0 |
ReadOnlyMany | >=2.2.3 |
ReadWriteMany | >=1.0.0 |
ReadWriteOncePod | >=2.2.3 |
OpenShift Version | CSI driver Version | EXA Version |
---|---|---|
v4.13 | >=v2.2.3 | >=v6.3.0 |
v4.14 | >=v2.2.4 | >=v6.3.0 |
v4.15 | >=v2.2.4 | >=v6.3.0 |
Internal OpenShift image registry needs to be patched to allow building lustre modules with KMM.
oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"managementState":"Managed"}}'
oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
oc patch configs.imageregistry.operator.openshift.io/cluster --type merge -p '{"spec":{"defaultRoute":true}}'
You will need a vm with the kernel version matching that of the OpenShift nodes. To check on nodes:
oc get nodes
oc debug node/c1-pk6k4-worker-0-2j6w8
uname -r
On the builder vm, install the matching kernel and log in to it, example for Rhel 9.2:
# login to subscription-manager
subscription-manager register --username <username> --password <password> --auto-attach
# list available kernels
yum --showduplicates list available kernel
yum install kernel-<version>-<revision>.<arch> # e.g.: yum install kernel-5.14.0-284.25.1.el9_2.x86_64
grubby --info=ALL | grep title
title="Red Hat Enterprise Linux (5.14.0-284.11.1.el9_2.x86_64) 9.2 (Plow)" <---- 0
title="Red Hat Enterprise Linux (5.14.0-284.25.1.el9_2.x86_64) 9.2 (Plow)" <---- 1
grub2-set-default 1
reboot
Copy EXAScaler client tar from the EXAScaler server:
scp root@<exa-server-ip>:/scratch/EXAScaler-<version>/exa-client-<version>.tar.gz .
tar -xvf exa-client-<version>.tar.gz
cd exa-client
./exa_client_deploy.py -i
This will build the rpms and install the client.
Upload the rpms to any repository available from the cluster and change deploy/openshift/lustre-module/lustre-dockerfile-configmap.yaml lines 12-13 accordingly.
Make sure that kmod-lustre-client-*.rpm
, lustre-client-*.rpm
and lustre-client-devel-*.rpm
packages are present.
RUN git clone https://github.com/Qeas/rpms.git # change this to your repo with matching rpms
RUN yum -y install rpms/*.rpm
Before loading the lustre modules, make sure to install OpenShift Kernel Module Management (KMM) via OpenShift console.
oc create -n openshift-kmm -f deploy/openshift/lustre-module/lustre-dockerfile-configmap.yaml
oc apply -n openshift-kmm -f deploy/openshift/lustre-module/lnet-mod.yaml
Wait for the builder pod (e.g. lnet-build-5f265-build
) to finish. After builder finishes,
you should have lnet-8b72w-6fjwh
running on each worker node.
# run ko2iblnd-mod if you are using Infiniband network
oc apply -n openshift-kmm -f deploy/openshift/lustre-module/ko2iblnd-mod.yaml
Make changes to deploy/openshift/lustre-module/lnet-configuration-ds.yaml
line 38 according to the cluster's network
lnetctl net add --net tcp --if br-ex # change interface according to your cluster
Configure lnet and install lustre
oc apply -n openshift-kmm -f deploy/openshift/lustre-module/lnet-configuration-ds.yaml
oc apply -n openshift-kmm -f deploy/openshift/lustre-module/lustre-mod.yaml
Make sure that openshift: true
in deploy/openshift/exascaler-csi-file-driver-config.yaml
.
Create a secret from the config file and apply the driver yaml.
oc create -n openshift-kmm secret generic exascaler-csi-file-driver-config --from-file=deploy/openshift/exascaler-csi-file-driver-config.yaml
oc apply -n openshift-kmm -f deploy/openshift/exascaler-csi-file-driver.yaml
oc delete -n openshift-kmm secret exascaler-csi-file-driver-config
oc delete -n openshift-kmm -f deploy/openshift/exascaler-csi-file-driver.yaml
oc delete -n openshift-kmm -f deploy/openshift/lustre-module/lustre-mod.yaml
oc delete -n openshift-kmm -f deploy/openshift/lustre-module/lnet-configuration-ds.yaml
oc delete -n openshift-kmm -f deploy/openshift/lustre-module/ko2iblnd-mod.yaml
oc delete -n openshift-kmm -f deploy/openshift/lustre-module/lnet-mod.yaml
oc delete -n openshift-kmm -f deploy/openshift/lustre-module/lustre-dockerfile-configmap.yaml
oc get images | grep lustre-client-moduleloader | awk '{print $1}' | xargs oc delete image
To use CSI snapshots, the snapshot CRDs along with the csi-snapshotter must be installed.
oc apply -f deploy/openshift/snapshots/
After that the snapshot class for EXA CSI must be created
Snapshot parameters can be passed through snapshot class as can be seen is examples/snapshot-class.yaml
List of available snapshot parameters:
Name | Description | Example |
---|---|---|
snapshotFolder |
[Optional] Folder on ExaScaler filesystem where the snapshots will be created. | csi-snapshots |
snapshotUtility |
[Optional] Either tar or dtar . Default is tar |
dtar |
snapshotMd5Verify |
[Optional] Defines whether the driver should do md5sum check on the snapshot. Ensures that the snapshot is not corrupt but reduces performance. Default is false |
true |
exaFS |
Same parameter as in storage class. If the original volume was created using storage class parameter for exaFS this MUST match the value of storage class. |
10.3.3.200@tcp:/csi-fs |
mountPoint |
Same parameter as in storage class. If the original volume was created using storage class parameter for mountPoint this MUST match the value of storage class. |
/exa-csi-mnt |
oc apply -f examples/snapshot-class.yaml
Now a snapshot can be created, for example
oc apply -f examples/snapshot-from-dynamic.yaml
We can create a volume using the snapshot
oc apply -f examples/nginx-from-snapshot.yaml
Exascaler CSI driver supports 2 snapshot modes: tar
or dtar
.
Default mode is tar
. Dtar is much faster.
To enable dtar
set snapshotUtility: dtar
in config.
-
Required API server and kubelet feature gates for k8s version < 1.16 (skip this step for k8s >= 1.16) (instructions):
--feature-gates=ExpandInUsePersistentVolumes=true,ExpandCSIVolumes=true,ExpandPersistentVolumes=true
-
Mount propagation must be enabled, the Docker daemon for the cluster must allow shared mounts (instructions)
-
MpiFileUtils dtar must be installed on all kubernetes nodes in order to use
dtar
as snapshot utility. Not required iftar
is used for snapshots (default).
EXAScaler client must be installed and configured on all kubernetes nodes. Please refer to EXAScaler Installation and Administration Guide.
Clone or untar driver (depending on where you get the driver)
git clone -b <driver version> https://github.com/DDNStorage/exa-csi-driver.git /opt/exascaler-csi-file-driver
e.g:-
git clone -b 2.2.4 https://github.com/DDNStorage/exa-csi-driver.git /opt/exascaler-csi-file-driver
or
rpm -Uvh exa-csi-driver-1.0-1.el7.x86_64.rpm
Pull latest helm chart configuration before installing or upgrading.
-
Make changes to
deploy/helm-chart/values.yaml
according to your Kubernetes and EXAScaler clusters environment. -
If metrics exporter is required, make changes to
deploy/helm-chart/values.yaml
according to your environment. refer to metrics exporter configuration -
Run
helm install -n ${namespace} exascaler-csi-file-driver deploy/helm-chart/
helm uninstall -n ${namespace} exascaler-csi-file-driver
- Make any necessary changes to the chart, for example new driver version:
tag: "v2.3.4"
indeploy/helm-chart/values.yaml
. - If metrics exporter is required, make changes to
deploy/helm-chart/values.yaml
according to your environment. refer to metrics exporter configuration - Run
helm upgrade -n ${namespace} exascaler-csi-file-driver deploy/helm-chart/
List of exported metrics:
- exa_csi_pvc_capacity_bytes - Total capacity in bytes of PVs with provisioner exa.csi.ddn.com
- exa_csi_pvc_used_bytes - Used bytes of PVs with provisioner exa.csi.ddn.com
- exa_csi_pvc_available_bytes - Available bytes of PVs with provisioner exa.csi.ddn.com
- exa_csi_pvc_pod_count - Number of pods using a PVC with provisioner exa.csi.ddn.com
Each of those metrics reports with 3 labels: "pvc", "storage_class", "exported_namespace". These labels can be used to group the metrics by kubernetes storage class and namespace as shown below in Add Prometheus Rules for StorageClass and Namespace Aggregation
metrics:
enabled: true # Enable metrics exporter
exporter:
repository: quay.io/ddn/exa-csi-metrics-exporter
tag: master # use latest version same as driver version e.g - tag: "2.3.4"
pullPolicy: Always
containerPort: "9200" # Metrics Exporter port
servicePort: "9200" # This port will be used to create service for exporter
namespace: default # Namespace where metrics exporter will be deployed
logLevel: info # Log level. Debug is not recommended for production, default is info.
collectTimeout: 10 # Metrics refresh timeout in seconds. Default is 10.
serviceMonitor:
enabled: false # set to true if using prometheus operator
interval: 30s
namespace: monitoring # Namespace where prometheus operator is deployed
prometheus:
releaseLabel: prometheus # release label for prometheus operator
createClusterRole: false # set to false if using existing ClusterRole
createClustrerRoleName: exa-prometheus-cluster-role # Name of ClusterRole to create, this name will be used to bind cluster role to prometheus service account
clusterRoleName: cluster-admin # Name of ClusterRole to bind to prometheus service account if createClusterRole is set to false otherwise `createClustrerRoleName` will be used
serviceAccountName: prometheus-kube-prometheus-prometheus # Service account name of prometheus
This section describes how to:
- Add the EXAScaler CSI metrics exporter to Prometheus' scrape configuration.
- Apply PrometheusRule definitions for metrics aggregation by StorageClass and Namespace.
Get the hostPort number of the EXAScaler CSI metrics exporter:
kubectl get daemonset exa-csi-metrics-exporter -o jsonpath='{.spec.template.spec.containers[*].ports[*].hostPort}{"\n"}'
32666
Create a Kubernetes secret that holds your additional Prometheus scrape configuration:
PORT=32666
cat <<EOF | envsubst > additional-scrape-configs.yaml
- job_name: 'exa-csi-metrics-exporter-remote'
static_configs:
- targets:
- 10.20.30.1:$PORT
- 10.20.30.2:$PORT
- 10.20.30.3:$PORT
EOF
kubectl create secret generic additional-scrape-configs \
--from-file=additional-scrape-configs.yaml -n monitoring
Note: Replace the targets value with the actual IP and port of your EXAScaler CSI metrics exporter.
Edit the Prometheus CR (custom resource) and add the additionalScrapeConfigs reference:
kubectl edit prometheus prometheus-kube-prometheus-prometheus -n monitoring
Add the following under spec:
additionalScrapeConfigs:
name: additional-scrape-configs
key: additional-scrape-configs.yaml
After editing the CR, restart Prometheus so it reloads the configuration:
kubectl delete pod -l app.kubernetes.io/name=prometheus -n monitoring
Apply a PrometheusRule resource to aggregate PVC metrics by StorageClass and Namespace:
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: exa-csi-rules
namespace: monitoring
labels:
release: prometheus
spec:
groups:
- name: exa-storageclass-rules
interval: 15s
rules:
- record: exa_csi_sc_capacity_bytes
expr: sum(exa_csi_pvc_capacity_bytes) by (storage_class)
- record: exa_csi_sc_used_bytes
expr: sum(exa_csi_pvc_used_bytes) by (storage_class)
- record: exa_csi_sc_available_bytes
expr: sum(exa_csi_pvc_available_bytes) by (storage_class)
- record: exa_csi_sc_pvc_count
expr: count(exa_csi_pvc_capacity_bytes) by (storage_class)
- name: exa-namespace-rules
interval: 15s
rules:
- record: exa_csi_namespace_capacity_bytes
expr: sum(exa_csi_pvc_capacity_bytes) by (exported_namespace)
- record: exa_csi_namespace_used_bytes
expr: sum(exa_csi_pvc_used_bytes) by (exported_namespace)
- record: exa_csi_namespace_available_bytes
expr: sum(exa_csi_pvc_available_bytes) by (exported_namespace)
- record: exa_csi_namespace_pvc_count
expr: count(exa_csi_pvc_capacity_bytes) by (exported_namespace)
Apply the rule:
kubectl apply -f exa-csi-rules.yaml
Ensure that Prometheus is watching the monitoring namespace for PrometheusRule CRDs.
docker load -i /opt/exascaler-csi-file-driver/bin/exascaler-csi-file-driver.tar
kubectl get deploy/exascaler-csi-controller -o jsonpath="{..image}"
- Copy /opt/exascaler-csi-file-driver/deploy/kubernetes/exascaler-csi-file-driver-config.yaml to /etc/exascaler-csi-file-driver-v1.0/exascaler-csi-file-driver-config.yaml
cp /opt/exascaler-csi-file-driver/deploy/kubernetes/exascaler-csi-file-driver-config.yaml /etc/exascaler-csi-file-driver-v1.0/exascaler-csi-file-driver-config.yaml
Edit /etc/exascaler-csi-file-driver-v1.0/exascaler-csi-file-driver-config.yaml
file. Driver configuration example:
exascaler_map:
exa1:
mountPoint: /exaFS # mountpoint on the host where the exaFS will be mounted
exaFS: 192.168.88.114@tcp2:192.168.98.114@tcp2:/testfs # default path to exa filesystem where the PVCs will be stored
managementIp: 10.204.86.114@tcp # network for management operations, such as create/delete volume
zone: zone-1
exa2:
mountPoint: /exaFS-zone-2 # mountpoint on the host where the exaFS will be mounted
exaFS: 192.168.78.112@tcp2:/testfs/zone-2 # default path to exa filesystem where the PVCs will be stored
managementIp: 10.204.86.114@tcp # network for management operations, such as create/delete volume
zone: zone-2
exa3:
mountPoint: /exaFS-zone-3 # mountpoint on the host where the exaFS will be mounted
exaFS: 192.168.98.113@tcp2:192.168.88.113@tcp2:/testfs/zone-3 # default path to exa filesystem where the PVCs will be stored
managementIp: 10.204.86.114@tcp # network for management operations, such as create/delete volume
zone: zone-3
debug: true
-
Create Kubernetes secret from the file:
kubectl create secret generic exascaler-csi-file-driver-config --from-file=/etc/exascaler-csi-file-driver-v1.0/exascaler-csi-file-driver-config.yaml
-
Register driver to Kubernetes:
kubectl apply -f /opt/exascaler-csi-file-driver/deploy/kubernetes/exascaler-csi-file-driver.yaml
For dynamic volume provisioning, the administrator needs to set up a StorageClass in the PV yaml (/opt/exascaler-csi-file-driver/examples/exa-dynamic-nginx.yaml for this example) pointing to the driver.
For dynamically provisioned volumes, Kubernetes generates volume name automatically (for example pvc-ns-cfc67950-fe3c-11e8-a3ca-005056b857f8-projectId-1001
).
Basic storage class example, uses config to access Exascaler
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: exascaler-csi-file-driver-sc-nginx-dynamic
provisioner: exa.csi.ddn.com
configName: exa1
The following example shows how to use storage class to override config values
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: exascaler-csi-file-driver-sc-nginx-dynamic
provisioner: exa.csi.ddn.com
allowedTopologies:
- matchLabelExpressions:
- key: topology.exa.csi.ddn.com/zone
values:
- zone-1
mountOptions: # list of options for `mount -o ...` command
# - noatime #
parameters:
exaMountUid: "1001" # Uid which will be used to access the volume in pod. Should be synced between EXA server and clients.
exaMountGid: "1002" # Gid which will be used to access the volume in pod. Should be synced between EXA server and clients.
bindMount: "true" # Determines, whether volume will bind mounted or as a separate lustre mount.
exaFS: "10.204.86.114@tcp:/testfs" # Overrides exaFS value from config. Use this to support multiple EXA filesystems.
mountPoint: /exaFS # Overrides mountPoint value from config. Use this to support multiple EXA filesystems.
mountOptions: ro,noflock
minProjectId: 10001 # project id range for this storage class
maxProjectId: 20000
Run Nginx pod with dynamically provisioned volume:
kubectl apply -f /opt/exascaler-csi-file-driver/examples/exa-dynamic-nginx.yaml
# to delete this pod:
kubectl delete -f /opt/exascaler-csi-file-driver/examples/exa-dynamic-nginx.yaml
The driver can use already existing Exasaler filesystem, in this case, StorageClass, PersistentVolume and PersistentVolumeClaim should be configured.
Quota can be manually assigned for static volumes. First we need to associate a project with the volume folder
lfs project -p 1000001 -s /mountPoint-csi/nginx-persistent
Then a quota can be set for that project
lfs setquota -p 1000001 -B 2G /mountPoint-csi/
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: exascaler-csi-driver-sc-nginx-persistent
provisioner: exa.csi.ddn.com
allowedTopologies:
- matchLabelExpressions:
- key: topology.exa.csi.ddn.com/zone
values:
- zone-1
mountOptions: # list of options for `mount -o ...` command
# - noatime #
apiVersion: v1
kind: PersistentVolume
metadata:
name: exascaler-csi-driver-pv-nginx-persistent
labels:
name: exascaler-csi-driver-pv-nginx-persistent
spec:
storageClassName: exascaler-csi-driver-sc-nginx-persistent
accessModes:
- ReadWriteMany
capacity:
storage: 1Gi
csi:
driver: exa.csi.ddn.com
volumeHandle: exa1:10.3.3.200@tcp;/exaFS:/mountPoint-csi:/nginx-persistent
volumeAttributes: # volumeAttributes are the alternative of storageClass params for static (precreated) volumes.
exaMountUid: "1001" # Uid which will be used to access the volume in pod.
#mountOptions: ro, flock # list of options for `mount` command
projectId: "1000001"
In order to configure CSI driver with kubernetes topology, use the zone
parameter in driver config or storageClass parameters. Example config file with zones:
exascaler_map:
exa1:
exaFS: 10.3.196.24@tcp:/csi
mountPoint: /exaFS
zone: us-west
exa2:
exaFS: 10.3.196.24@tcp:/csi-2
mountPoint: /exaFS-zone2
zone: us-east
This will assign volumes to be created on Exascaler cluster that correspond with the zones requested by allowedTopologies values.
For topology-aware scheduling:
Each node must have the topology.exa.csi.ddn.com/zone
label with the zone configuration.
Label node with topology zone:
kubectl label node <node-name> topology.exa.csi.ddn.com/zone=us-west
For removing label:
kubectl label node <node-name> topology.exa.csi.ddn.com/zone-
Important: If topology labels are added after driver installation, the node driver must be restarted on affected nodes.
Restart node driver pod on specific node:
kubectl delete pod -l app=exascaler-csi-node -n <namespace> --field-selector spec.nodeName=<node-name>
or restart all node driver pods:
kubectl rollout restart daemonset exascaler-csi-node -n <namespace>
For using volumeBindingMode: WaitForFirstConsumer
, the topology must be configured.
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: exascaler-csi-file-driver-sc-nginx-dynamic
provisioner: exa.csi.ddn.com
volumeBindingMode: WaitForFirstConsumer
parameters:
configName: exa1
If a parameter is available for both config and storage class, storage class parameter will override config values
Config | Storage class | Description | Example |
---|---|---|---|
exaFS |
exaFS |
[required] Full path to EXAScaler filesystem | 10.3.3.200@tcp:/csi-fs |
mountPoint |
mountPoint |
[required] Mountpoint on Kubernetes host where the exaFS will be mounted | /exa-csi-mnt |
- | driver [required] |
Installed driver name " exa.csi.ddn.com" | exa.csi.ddn.com |
- | volumeHandle |
[required for static volumes] The format is <configName>:<NID>;<Exascaler filesystem path>:<mountPoint>:<volumeHandle>. Note: The NID and Exascaler filesystem path are separated by a semicolon ( ; ), all other fields are delimited by a colon ( : ). | exa1:10.3.3.200@tcp;/exaFS:/mountPoint-csi:/nginx-persistent |
- | exaMountUid |
Uid which will be used to access the volume from the pod. | 1015 |
- | exaMountGid |
Gid which will be used to access the volume from the pod. | 1015 |
- | projectId |
Points to EXA project id to be used to set volume quota. Automatically generated by the driver if not provided. | 100001 |
managementIp |
managementIp |
Should be used if there is a separate network configured for management operations, such as create/delete volumes. This network should have access to all Exa filesystems in a isolated zones environment | 192.168.10.20@tcp2 |
bindMount |
bindMount |
Determines, whether volume will bind mounted or as a separate lustre mount. Default is true |
true |
defaultMountOptions |
mountOptions |
Options that will be passed to mount command (-o <opt1,opt2,opt3>) | ro,flock |
- | minProjectId |
Minimum project ID number for automatic generation. Only used when projectId is not provided. | 10000 |
- | maxProjectId |
Maximum project ID number for automatic generation. Only used when projectId is not provided. | 4294967295 |
- | generateProjectIdRetries |
Maximum retry count for generating random project ID. Only used when projectId is not provided. | 5 |
zone |
zone |
Topology zone to control where the volume should be created. Should match topology.exa.csi.ddn.com/zone label on node(s). | us-west |
v1xCompatible |
- | [Optional] Only used when upgrading the driver from v1.x.x to v2.x.x. Provides compatibility for volumes that were created beore the upgrade. Set it to true to point to the Exa cluster that was configured before the upgrade |
false |
tempMountPoint |
tempMountPoint |
[Optional] Used when exaFS points to a subdirectory that does not exist on Exascaler and will be automatically created by the driver. This parameter sets the directory where Exascaler filesystem will be temporarily mounted to create the subdirectory. |
/tmp/exafs-mnt |
volumeDirPermissions |
volumeDirPermissions |
[Optional] Defines file permissions for mounted volumes. | 0777 |
hotNodes |
hotNodes |
Determines whether HotNodes feature should be used. This feature can only be used by the driver when Hot Nodes (PCC) service is disabled and not used manually on the kubernetes workers. |
false |
pccCache |
pccCache |
Directory for cached files of the file system. Note that lpcc does not recognize directories with a | |
trailing slash (“/” at the end). | /csi-pcc |
||
pccAutocache |
pccAutocache |
Condition for automatic file attachment (caching) | projid={500} |
pccPurgeHighUsage |
pccPurgeHighUsage |
If the disk usage of cache device is higher than high_usage, start detaching the files. Defaults to 90 (90% disk/inode usage). | 90 |
pccPurgeLowUsage |
pccPurgeLowUsage |
If the disk usage of cache device is lower than low_usage, stop detaching the files. Defaults to 75 (75% disk/inode usage). | 70 |
pccPurgeScanThreads |
pccPurgeScanThreads |
Threads to use for scanning cache device in parallel. Defaults to 1. | 1 |
pccPurgeInterval |
pccPurgeInterval |
Interval for lpcc_purge to check cache device usage, in seconds. Defaults to 30. | 30 |
pccPurgeLogLevel |
pccPurgeLogLevel |
Log level for lpcc_purge: either “fatal”, “error”, “warn”, “normal”, “info” (default), or “debug”. | info |
pccPurgeForceScanInterval |
pccPurgeForceScanInterval |
Scan PCC backends forcefully after this number of seconds to refresh statistic data. | 30 |
- | compression |
Algorithm ["lz4", "gzip", "lzo"] to use for data compression. default is "false" | false |
- | configName |
Config entry name to use from the config map | exa1 |
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: exascaler-csi-driver-pvc-nginx-persistent
spec:
storageClassName: exascaler-csi-driver-cs-nginx-persistent
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
selector:
matchLabels:
# to create 1-1 relationship for pod - persistent volume use unique labels
name: exascaler-csi-file-driver-pv-nginx-persistent
Run nginx server using PersistentVolume.
Note: Pre-configured filesystem should exist on the EXAScaler:
/exaFS/nginx-persistent
.
kubectl apply -f /opt/exascaler-csi-file-driver/examples/nginx-persistent-volume.yaml
# to delete this pod:
kubectl delete -f /opt/exascaler-csi-file-driver/examples/nginx-persistent-volume.yaml
To use CSI snapshots, the snapshot CRDs along with the csi-snapshotter must be installed.
kubectl apply -f deploy/kubernetes/snapshots/
After that the snapshot class for EXA CSI must be created
Snapshot parameters can be passed through snapshot class as can be seen is examples/snapshot-class.yaml
List of available snapshot parameters:
Name | Description | Example |
---|---|---|
snapshotFolder |
[Optional] Folder on ExaScaler filesystem where the snapshots will be created. | csi-snapshots |
snapshotUtility |
[Optional] Either tar or dtar . dtar is faster but requires dtar to be installed on all k8s nodes. Default is tar |
dtar |
dtarPath |
[Optional] If snapshotUtility is dtar points to where the dtar utility is installed |
/opt/ddn/mpifileutils/bin/dtar |
snapshotMd5Verify |
[Optional] Defines whether the driver should do md5sum check on the snapshot. Ensures that the snapshot is not corrupt but reduces performance. Default is false |
true |
exaFS |
Same parameter as in storage class. If the original volume was created using storage class parameter for exaFS this MUST match the value of storage class. |
10.3.3.200@tcp:/csi-fs |
mountPoint |
Same parameter as in storage class. If the original volume was created using storage class parameter for mountPoint this MUST match the value of storage class. |
/exa-csi-mnt |
kubectl apply -f examples/snapshot-class.yaml
Now a snapshot can be created, for example
kubectl apply -f examples/snapshot-from-dynamic.yaml
We can create a volume using the snapshot
kubectl apply -f examples/nginx-from-snapshot.yaml
Exascaler CSI driver supports 2 snapshot modes: tar
or dtar
.
Default mode is tar
.
To enable dtar
set snapshotUtility: dtar
in config.
Dtar is much faster but requires mpifileutils dtar
installed on all the nodes as a prerequisite.
Installing dtar
might differ depending on your OS. Here is an example for Ubuntu 22
# Install dependencies mpifileutils
cd
mkdir -p /opt/ddn/mpifileutils
cd /opt/ddn/mpifileutils
sudo apt-get install -y cmake libarchive-dev libbz2-dev libcap-dev libssl-dev openmpi-bin libopenmpi-dev libattr1-dev
export INSTALL_DIR=/opt/ddn/mpifileutils
git clone https://github.com/LLNL/lwgrp.git
cd lwgrp
./autogen.sh
./configure --prefix=$INSTALL_DIR
make -j 16
make install
cd ..
git clone https://github.com/LLNL/dtcmp.git
cd dtcmp
./autogen.sh
./configure --prefix=$INSTALL_DIR --with-lwgrp=$INSTALL_DIR
make -j 16
make install
cd ..
git clone https://github.com/hpc/libcircle.git
cd libcircle
sh ./autogen.sh
./configure --prefix=$INSTALL_DIR
make -j 16
make install
cd ..
git clone https://github.com/hpc/mpifileutils.git mpifileutils-clone
cd mpifileutils-clone
cmake ./ -DWITH_DTCMP_PREFIX=$INSTALL_DIR -DWITH_LibCircle_PREFIX=$INSTALL_DIR -DCMAKE_INSTALL_PREFIX=$INSTALL_DIR -DENABLE_LUSTRE=ON -DENABLE_XATTRS=ON
make -j 16
make install
cd ..
If you use a different INSTALL_DIR
path, pass it in config using DtarPath
parameter.
- Limitations: If you are planning to use volumes from more than one Exascaler Filesystem on a single worker node, then the encryption does not work in the current release.
To use encrypted volumes, first create a secret with a passphrase.
kubectl create secret generic exa-csi-sc1 --from-literal=passphrase=pass1
Then, enable encryption in storage class parameters and pass the secret:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: exascaler-csi-file-driver-sc-1
provisioner: exa.csi.ddn.com
allowVolumeExpansion: true
parameters:
csi.storage.k8s.io/provisioner-secret-name: exa-csi-sc1
csi.storage.k8s.io/provisioner-secret-namespace: default
csi.storage.k8s.io/node-publish-secret-name: exa-csi-sc1
csi.storage.k8s.io/node-publish-secret-namespace: default
csi.storage.k8s.io/controller-expand-secret-name: exa-csi-sc1
csi.storage.k8s.io/controller-expand-secret-namespace: default
encryption: "true"
For static provisioning, encryption should be enabled on the volume before using it in kubernetes CSI. Make sure to use a protector (existing or create new one) with the same passphrase as in the secret.
fscrypt setup /exa-mount
echo "pass1" | fscrypt metadata create protector /exa-mount --source=custom_passphrase --name=persistent-protector --quiet
fscrypt status /exa-mount
protectorid=$(fscrypt status /exa-mount | awk '/persistent-protector/ {print $1}')
echo "pass1" | fscrypt encrypt /exa-mount/static-enc --protector=/exa-mount:$protectorid --quiet
If you have a nodemap where some nodes mount subfolder instead of root filesystem, you will need
to have at least 1 dedicated node able to mount the ExaScaler root fs to run the controller driver.
Use managementExaFs
secret to pass the full path to the mapped subdirectory.
For example, we have the following filesystem:
192.168.5.1@tcp,192.168.6.1@tcp:/fs
with 2 subfolders tenant1
and tenant2
.
Create 2 secrets (if using with encryption, bot passphrase
and managementExaFs
should be in the secret)
kubectl create secret generic exa-csi-sc1 --from-literal=passphrase=pass1 --from-literal=managementExaFs=192.168.5.1@tcp,192.168.6.1@tcp:/fs/tenant1
kubectl create secret generic exa-csi-sc2 --from-literal=passphrase=pass2 --from-literal=managementExaFs=192.168.5.1@tcp,192.168.6.1@tcp:/fs/tenant2
And 2 storage classes:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: exascaler-csi-file-driver-sc-1
provisioner: exa.csi.ddn.com
allowVolumeExpansion: true
parameters:
csi.storage.k8s.io/provisioner-secret-name: exa-csi-sc1
csi.storage.k8s.io/provisioner-secret-namespace: default
csi.storage.k8s.io/node-publish-secret-name: exa-csi-sc1
csi.storage.k8s.io/node-publish-secret-namespace: default
csi.storage.k8s.io/controller-expand-secret-name: exa-csi-sc1
csi.storage.k8s.io/controller-expand-secret-namespace: default
encryption: "true"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: exascaler-csi-file-driver-sc-2
provisioner: exa.csi.ddn.com
allowVolumeExpansion: true
parameters:
csi.storage.k8s.io/provisioner-secret-name: exa-csi-sc2
csi.storage.k8s.io/provisioner-secret-namespace: default
csi.storage.k8s.io/node-publish-secret-name: exa-csi-sc2
csi.storage.k8s.io/node-publish-secret-namespace: default
csi.storage.k8s.io/controller-expand-secret-name: exa-csi-sc1
csi.storage.k8s.io/controller-expand-secret-namespace: default
encryption: "true"
We need to run the controller driver on a dedicated node that has permissions to mount
192.168.5.1@tcp,192.168.6.1@tcp:/fs
.
And we need to ensure that applications pods are not scheduled on this node, we will use NoSchedule
taint to
ensure that. Note: There are other ways in kubernetes to configure this, such as nodeSelector
, affinity
and topologySpreadConstraints
.
kubectl taint nodes node1 management:NoSchedule
Add a toleration
and a nodeName
to our driver Deployment
.
For helm chart deployment: https://github.com/DDNStorage/exa-csi-driver/blob/master/deploy/helm-chart/templates/controller-driver.yaml#L203
For generic kubernetes yaml files: https://github.com/DDNStorage/exa-csi-driver/blob/master/deploy/kubernetes/exascaler-csi-file-driver.yaml#L216
spec:
# serviceName: exascaler-csi-controller-service
selector:
matchLabels:
app: exascaler-csi-controller # has to match .spec.template.metadata.labels
template:
metadata:
labels:
app: exascaler-csi-controller
spec:
serviceAccount: exascaler-csi-controller-service-account
priorityClassName: {{ .Values.priorityClassName }}
tolerations:
- key: "management"
operator: "Exists"
effect: "NoSchedule"
nodeName: "node1"
This will ensure that controller driver is running on management node.
To update to a new driver version, you need to follow the following steps:
- Remove the old driver version
kubectl delete -f /opt/exascaler-csi-file-driver/deploy/kubernetes/exascaler-csi-file-driver.yaml
kubectl delete secrets exascaler-csi-file-driver-config
rpm -evh exa-csi-driver
- Download the new driver version (git clone or new ISO)
- Copy and edit config file
cp /opt/exascaler-csi-file-driver/deploy/kubernetes/exascaler-csi-file-driver-config.yaml /etc/exascaler-csi-file-driver-v1.1/exascaler-csi-file-driver-config.yaml
If you are upgrading from v1.x.x to v2.x.x, config file structure will change to a map of Exascaler clusters instead of a flat structure. To support old volume that were created using v1.x.x, old config should be put in the config map with v1xCompatible: true
. For example:
v1.x.x config
exaFS: 10.3.196.24@tcp:/csi
mountPoint: /exaFS
debug: true
v2.x.x config with support of previously created volumes
exascaler_map:
exa1:
exaFS: 10.3.196.24@tcp:10.3.199.24@tcp:/csi
mountPoint: /exaFS
v1xCompatible: true
exa2:
exaFS: 10.3.1.200@tcp:10.3.2.200@tcp:10.3.3.200@tcp:/csi-fs
mountPoint: /mnt2
debug: true
Only one of the Exascaler clusters can have v1xCompatible: true
since old config supported only 1 cluster.
- Update version in /opt/exascaler-csi-file-driver/deploy/kubernetes/exascaler-csi-file-driver.yaml
image: exascaler-csi-file-driver:v2.2.5
- Load new image
docker load -i /opt/exascaler-csi-file-driver/bin/exascaler-csi-file-driver.tar
- Apply new driver
kubectl create secret generic exascaler-csi-file-driver-config --from-file=/etc/exascaler-csi-file-driver-v1.1/exascaler-csi-file-driver-config.yaml
kubectl apply -f /opt/exascaler-csi-file-driver/deploy/kubernetes/exascaler-csi-file-driver.yaml
- Verify version
kubectl get deploy/exascaler-csi-controller -o jsonpath="{..image}"
To collect all driver related logs, you can use the kubectl logs
command.
All in on command:
mkdir exa-csi-logs
for name in $(kubectl get pod -owide | grep exa | awk '{print $1}'); do kubectl logs $name --all-containers > exa-csi-logs/$name; done
To get logs from all containers of a single pod
kubectl logs <pod_name> --all-containers
Logs from a single container of a pod
kubectl logs <pod_name> -c driver
kubectl get secret exascaler-csi-file-driver-config -o json | jq '.data | map_values(@base64d)' > exa-csi-logs/exascaler-csi-file-driver-config
kubectl get pvc > exa-csi-logs/pvcs
kubectl get pv > exa-csi-logs/pvs
kubectl get pod > exa-csi-logs/pods
kubectl describe pvc <pvc_name> > exa-csi-logs/<pvc_name>
kubectl describe pv <pv_name> > exa-csi-logs/<pv_name>
kubectl describe pod <pod_name> > exa-csi-logs/<pod_name>
To enable debug logging for the driver, change debug value to true
in either the secret for generic kubernetes installation or the values.yaml
for helm based installation and re-deploy the driver.
To enable debug level logging for metrics, change the logLevel
to debug
in metrics exporter configuration. Either https://github.com/DDNStorage/exa-csi-driver/blob/master/deploy/kubernetes/metrics/daemonset.yaml#L48
or https://github.com/DDNStorage/exa-csi-driver/blob/master/deploy/helm-chart/values.yaml#L86
depending on how it was installed.