Draft
Conversation
800de19 to
b7e80b9
Compare
|
|
||
| # Summary | ||
|
|
||
| `dte_adj` is a Python package designed for estimating distributional treatment effects (DTEs) in randomized experiments. Unlike traditional approaches that focus on average treatment effects, `dte_adj` enables researchers to analyze the full distributional impact of interventions across different outcome levels. The package implements machine learning-enhanced regression adjustment methods to achieve variance reduction, making distributional effect estimation more precise and computationally efficient. It supports multiple experimental designs including simple randomization, covariate-adaptive randomization (CAR), and local distributional treatment effect (LDTE) estimation. The package provides a scikit-learn compatible API and comprehensive functionality for computing distribution functions, probability treatment effects, and quantile treatment effects with confidence intervals. |
There was a problem hiding this comment.
読者層的にはA/Bテストっていう言い方しかわからない人もいるかも?と思いました。
randomized experiments (RCTs, also known as A/B tests) とかはどうでしょうか?
|
|
||
| Randomized experiments have been fundamental to scientific inquiry since the pioneering work of @Fisher:1935, providing the gold standard for causal inference. While most experimental analyses focus on average treatment effects (ATEs), many research questions require understanding how treatments affect the entire distribution of outcomes, not just the mean. Distributional treatment effects (DTEs) capture these richer patterns, revealing heterogeneous impacts across different outcome levels that averages can mask. | ||
|
|
||
| Despite the growing importance of distributional analysis in fields ranging from economics to medicine, the Python ecosystem lacks comprehensive tools for DTE estimation. While SciPy provides basic empirical cumulative distribution functions, it offers no specialized functionality for treatment effect estimation, variance reduction, or confidence interval construction in experimental settings. Existing R packages like `RDDtools` focus on regression discontinuity rather than randomized experiments, and lack modern machine learning integration. |
There was a problem hiding this comment.
比較するライブラリとしてはDoWhyやEconMLを追加すると良いかと思いました。EconMLは機械学習取り込んでますが、distributionalな話はしてないという言い方ができるかと思います。
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.
No description provided.