Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DOC: add 1D projections of Dalitz plot #15

Merged
merged 8 commits into from
Oct 10, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions .cspell.json
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
"caplog",
"codecov",
"codemirror",
"colorbar",
"commitlint",
"concat",
"docnb",
Expand All @@ -64,8 +65,10 @@
"mathrm",
"maxdepth",
"meshgrid",
"nansum",
"nbconvert",
"nbformat",
"ncols",
"noreply",
"pandoc",
"pbar",
Expand All @@ -75,9 +78,11 @@
"prereleased",
"pygments",
"redeboer",
"sharey",
"startswith",
"textwrap",
"toctree",
"wspace",
"xlabel",
"xreplace",
"xrightarrow",
Expand Down
7 changes: 5 additions & 2 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,11 +122,14 @@ def generate_api() -> None:
html_title = "Symbolic Dalitz-Plot Decomposition"
intersphinx_mapping = {
"IPython": ("https://ipython.readthedocs.io/en/stable", None),
"ampform": (f"https://ampform.readthedocs.io/en/stable", None),
"ampform": ("https://ampform.readthedocs.io/en/stable", None),
"attrs": ("https://www.attrs.org/en/stable", None),
"compwa-org": (f"https://compwa-org.readthedocs.io", None),
"compwa-org": ("https://compwa-org.readthedocs.io", None),
"jax": ("https://jax.readthedocs.io/en/latest", None),
"matplotlib": ("https://matplotlib.org/stable", None),
"python": ("https://docs.python.org/3", None),
"sympy": ("https://docs.sympy.org/latest", None),
"tensorwaves": ("https://tensorwaves.readthedocs.io/en/stable", None),
}
linkcheck_anchors = False
linkcheck_ignore = [
Expand Down
94 changes: 79 additions & 15 deletions docs/jpsi2ksp.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,6 @@
" make_commutative,\n",
")\n",
"from IPython.display import Latex, Markdown\n",
"from matplotlib.colors import LogNorm\n",
"from tensorwaves.function.sympy import create_function\n",
"\n",
"from ampform_dpd import (\n",
Expand Down Expand Up @@ -80,7 +79,11 @@
"source": [
"We follow [this example](https://qrules.readthedocs.io/en/0.9.7/usage.html#investigate-intermediate-resonances), which was generated with QRules, and leave out the $K$-resonances:\n",
"\n",
"![](https://qrules.readthedocs.io/en/0.9.7/_images/usage_9_0.svg)"
"![](https://qrules.readthedocs.io/en/0.9.7/_images/usage_9_0.svg)\n",
"\n",
":::{warning}\n",
"In the above figure, the final states are labeled `0`, `1`, `2`, but in the DPD formalism, the final states are labeled `1`, `2`, `3`.\n",
":::"
]
},
{
Expand Down Expand Up @@ -260,7 +263,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"In the following, we define symbols for relativistic Breit-Wigner functions and form factors as follows:"
"In the following, we define the **relativistic Breit-Wigner function** as:"
]
},
{
Expand All @@ -270,7 +273,9 @@
"jupyter": {
"source_hidden": true
},
"tags": []
"tags": [
"hide-input"
]
},
"outputs": [],
"source": [
Expand Down Expand Up @@ -309,7 +314,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"with $\\Gamma_0(s)$ a {class}`~ampform.dynamics.EnergyDependentWidth`, and"
"with $\\Gamma_0(s)$ a {class}`~ampform.dynamics.EnergyDependentWidth`, and we define the **form factor** as:"
]
},
{
Expand Down Expand Up @@ -519,7 +524,9 @@
"jupyter": {
"source_hidden": true
},
"tags": []
"tags": [
"hide-input"
]
},
"outputs": [],
"source": [
Expand Down Expand Up @@ -669,6 +676,19 @@
"func = create_function(dalitz_expression, backend=\"jax\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [],
"source": [
"%config InlineBackend.figure_formats = ['png']"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand All @@ -682,21 +702,65 @@
},
"outputs": [],
"source": [
"plt.rc(\"font\", size=18)\n",
"resolution = 500\n",
"X, Y = jnp.meshgrid(\n",
" jnp.linspace(1.4, 1.93, num=resolution),\n",
" jnp.linspace(1.65, 2.2, num=resolution),\n",
" jnp.linspace(1.66**2, 2.18**2, num=resolution),\n",
" jnp.linspace(1.4**2, 1.93**2, num=resolution),\n",
")\n",
"data = {\n",
" \"sigma2\": X**2,\n",
" \"sigma3\": Y**2,\n",
" \"sigma3\": X,\n",
" \"sigma2\": Y,\n",
"}\n",
"intensities = func(data)\n",
"\n",
"fig, ax = plt.subplots(figsize=(12, 10))\n",
"ax.pcolormesh(X, Y, intensities, norm=LogNorm())\n",
"ax.set_xlabel(R\"$M\\left(K^0\\bar{p}\\right)$\")\n",
"ax.set_ylabel(R\"$M\\left(K^0\\Sigma^+\\right)$\")\n",
"normalized_intensities = intensities / jnp.nansum(intensities)\n",
"\n",
"fig, ax = plt.subplots(figsize=(14, 10))\n",
"mesh = ax.pcolormesh(X, Y, normalized_intensities)\n",
"ax.set_aspect(\"equal\")\n",
"c_bar = plt.colorbar(mesh, ax=ax, pad=0.01)\n",
"c_bar.ax.set_ylabel(\"Normalized intensity (a.u.)\")\n",
"ax.set_xlabel(R\"$M^2\\left(K^0\\Sigma^+\\right)$\")\n",
"ax.set_ylabel(R\"$M^2\\left(K^0\\bar{p}\\right)$\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [],
"source": [
"%config InlineBackend.figure_formats = ['svg']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"jupyter": {
"source_hidden": true
},
"tags": [
"hide-input",
"full-width"
]
},
"outputs": [],
"source": [
"plt.rc(\"font\", size=16)\n",
"fig, axes = plt.subplots(figsize=(18, 6), ncols=2, sharey=True)\n",
"fig.subplots_adjust(wspace=0.02)\n",
"ax1, ax2 = axes\n",
"ax1.fill_between(jnp.sqrt(X[0]), jnp.nansum(normalized_intensities, axis=0))\n",
"ax2.fill_between(jnp.sqrt(Y[:, 0]), jnp.nansum(normalized_intensities, axis=1))\n",
"ax1.set_ylabel(\"Normalized intensity (a.u.)\")\n",
"ax1.set_xlabel(R\"$M\\left(K^0\\Sigma^+\\right)$\")\n",
"ax2.set_xlabel(R\"$M\\left(K^0\\bar{p}\\right)$\")\n",
"plt.show()"
]
}
Expand Down
Loading