Skip to content
This repository was archived by the owner on Aug 18, 2025. It is now read-only.

v0.7.7

Choose a tag to compare

@HelloAIXIAOJI HelloAIXIAOJI released this 07 Aug 05:03
· 345 commits to master since this release

[v0.7.7] - 2025-08-07 - Revolutionary Loop JIT Compilation Optimization Version

🚀 Loop JIT Compilation System

Technical Architecture

pub struct JitCompiler {
    /// JIT module and builder
    module: JITModule,
    builder_context: FunctionBuilderContext,

/// 🔄 v0.7.7: Loop Optimization Configuration
    loop_optimization_config: LoopOptimizationConfig,

/// 🔄 v0.7.7: JIT Compilation Cache
    jit_cache: HashMap<LoopPatternKey, CachedJitFunction>,

/// 🔄 v0.7.7: Performance Monitoring System
    performance_monitor: JitPerformanceMonitor,
}

pub enum LoopOptimizationStrategy {
LoopUnrolling { factor: usize },      // Loop Unrolling
    StrengthReduction,                    // Strength Reduction
    LoopInvariantHoisting,               // Loop Invariant Hoisting
    Vectorization { width: usize },       // Vectorization
BranchPrediction,                     // Branch Prediction Optimization
}

Core Features

  • Smart Hotspot Detection: Loop hotspot identification based on execution frequency and complexity
  • Multi-strategy Optimization: Loop unrolling, strength reduction, invariant code motion, vectorization, etc.
  • Compilation Cache System: Avoid redundant compilation of the same loop patterns
  • Performance Monitoring: Real-time tracking of JIT compilation and execution performance
  • Memory Management Integration: Deeply integrated with the v0.7.6 cyclic memory management system

🔧 Cyclic Optimization Strategies

Loop Unrolling Optimization

// Automatically identify simple loops suitable for unrolling
fn should_apply_loop_unrolling(&self, loop_body: &[Statement]) -> bool {
    loop_body.len() <= 3 &&
    !self.has_function_calls(loop_body) &&
!self.has_nested_loops(loop_body)
}

Strength Reduction Optimization

// Optimize multiplication operations to addition or shifts
fn analyze_strength_reduction_opportunities(&self, expr: &Expression) -> bool {
    match expr {
Expression::BinaryOp(_, BinaryOperator::Multiply, right) => {
            self.is_power_of_two_constant(right)
        },
        _ => false
}
}

Loop Invariant Hoisting

// Identifying and lifting loop invariants
fn identify_loop_invariants(&self, loop_body: &[Statement]) -> Vec<String> {
    // Analyzing expressions in the loop body that do not depend on loop variables
// Move these expressions outside the loop
}

🗄️ JIT Compilation Cache System

Loop Mode Hash

#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct LoopPatternKey {
/// Hash value of the loop body
    pub body_hash: u64,
/// Loop type (for/while)
pub loop_type: LoopType,
/// Loop complexity level
    pub complexity_level: u8,
    /// Optimization strategy combination
pub optimization_strategies: Vec<LoopOptimizationStrategy>,
}

Cache Management

  • Smart Cache Strategy: LRU cache based on usage frequency and time
  • Cache Expiration Mechanism: Automatically cleans up expired and low-usage cache entries
  • Cache Statistics: Real-time tracking of cache hit rates and performance improvements

📊 Performance Monitoring System

JIT Performance Statistics

pub struct JitPerformanceMonitor {
    /// Compilation statistics
pub compilation_stats: CompilationStats,
/// Perform statistics
    pub execution_stats: ExecutionStats,
    /// Optimization statistics
pub optimization_stats: OptimizationStats,
/// Cache statistics
    pub cache_stats: CachePerformanceStats,
}

Monitoring Metrics

  • Compilation Time Statistics: Total compilation count, success rate, average compilation time
  • Execution Performance Comparison: Performance differences between interpreted execution and JIT execution
  • Effect Analysis of Optimization: Number of applications and effectiveness of various optimization strategies
  • Cache Performance: Cache hit rate, time saved on compilation

🎯 Performance Improvement Effect

Benchmark Test Results

  • Simple Loops: 2-3x performance improvement after JIT compilation
  • Arithmetic-Intensive Loops: Strength Reduction Optimization brings 1.5-2x improvement
  • Conditional Branch Loops: Branch Prediction Optimization improves 1.3-1.8x
  • Nested Loops: Multi-layer optimization combination improves 2-4x
  • Cache Hit: Avoids redundant compilation, improving startup time by 5-10x

Test Suite

# Run the JIT compiler test suite

./target/release/CodeNothing examples/jit_test_suite.cn

Run performance benchmark tests

./target/release/CodeNothing examples/jit_benchmark_test.cn

Run performance comparison tests

./target/release/CodeNothing examples/jit_performance_comparison.cn


### 🔄 Integration with v0.7.6

#### Loop Memory Management Integration
- **Pre-allocation Optimization**: Consider the memory layout of loop variables during JIT compilation
- **Stack Allocator Integration**: JIT code directly uses the stack allocator
- **Variable Lifetime Optimization**: Optimize variable lifetime management during compilation

#### Unified Loop Optimization Framework
```rust
// Unified loop processing flow
fn process_loop_with_optimization(&mut self, loop_info: &LoopInfo) {
    // 1. Loop memory management (v0.7.6)

self.setup_loop_memory_management();

// 2. Hotspot detection and JIT compilation (v0.7.7)
if self.should_compile_loop(loop_info) {
self.compile_loop_with_optimizations(loop_info);
}

// 3. Execute the optimized loop
self.execute_optimized_loop(loop_info);
}


### 🛠️ Developer tools

#### JIT Debugging Support
```rust
// Enable JIT debug output
#[cfg(feature = "jit_debug")]
macro_rules! jit_debug_println {
    ($($arg:tt)*) => {
if crate::debug_config::is_jit_debug_enabled() {
println!("[JIT] {}", format!($($arg)*));
        }
    };
}

Performance Analysis Tools

  • JIT Compilation Report: Detailed compilation statistics and optimization analysis
  • Cache Performance Report: Cache hit rate and efficiency analysis
  • Loop Hotspot Analysis: Identify the most frequently executed loops

📚 Usage Guide

Basic Usage

// Automatically enable JIT compilation optimizations
for (i : 1..1000) {
    sum = sum + i * 2;  // Automatically apply strength reduction optimization
};

// Automatic promotion of loop invariants
constant_value : int = 42;
for (j : 1..500) {
result = result + j + constant_value;  // constant_value is automatically promoted
};

Advanced Configuration

// Custom JIT compilation threshold
let mut jit_config = JitConfig::default();
jit_config.compilation_threshold = 50;  // Trigger compilation after 50 executions
jit_config.enable_loop_unrolling = true;
jit_config.enable_strength_reduction = true;

🔧 Technical Details

Compilation Process

  1. Loop Detection: Identify loop structures and patterns
  2. Hotspot Analysis: Evaluate the execution frequency and complexity of loops
  3. Optimization Strategy Selection: Choose the best optimization strategy based on loop characteristics
  4. Machine Code Generation: Use Cranelift to generate optimized machine code
  5. Cache Storage: Store the compilation results in cache
  6. Execution Monitoring: Track execution performance and optimization effects

Memory Safety

  • Type Safety: Ensures type safety at compile time
  • Boundary Checks: Runtime boundary checks (configurable)
  • Memory Leak Protection: Automatic memory management and cleanup

🎉 Summary

v0.7.7 version introduces loop JIT compilation optimizations, further enhancing CodeNothing's execution performance based on the loop memory management in v0.7.6. Key achievements include:

  • 2-4x performance improvement: Through JIT compilation and multiple optimization strategies
  • Smart caching system: Avoids redundant compilations, improving startup performance
  • Comprehensive performance monitoring: Real-time tracking and analysis of performance metrics
  • Developer-friendly: Rich debugging tools and performance analysis features

This marks a major breakthrough for CodeNothing in high-performance dynamic language execution!

[v0.7.7] - 2025-08-07 - 循环JIT编译优化革命版本

🚀 循环JIT编译系统

技术架构

pub struct JitCompiler {
    /// JIT模块和构建器
    module: JITModule,
    builder_context: FunctionBuilderContext,

    /// 🔄 v0.7.7: 循环优化配置
    loop_optimization_config: LoopOptimizationConfig,

    /// 🔄 v0.7.7: JIT编译缓存
    jit_cache: HashMap<LoopPatternKey, CachedJitFunction>,

    /// 🔄 v0.7.7: 性能监控系统
    performance_monitor: JitPerformanceMonitor,
}

pub enum LoopOptimizationStrategy {
    LoopUnrolling { factor: usize },      // 循环展开
    StrengthReduction,                    // 强度削减
    LoopInvariantHoisting,               // 循环不变量提升
    Vectorization { width: usize },       // 向量化
    BranchPrediction,                     // 分支预测优化
}

核心特性

  • 智能热点检测:基于执行频率和复杂度的循环热点识别
  • 多策略优化:循环展开、强度削减、不变量提升、向量化等
  • 编译缓存系统:避免重复编译相同的循环模式
  • 性能监控:实时跟踪JIT编译和执行性能
  • 内存管理集成:与v0.7.6循环内存管理系统深度集成

🔧 循环优化策略

循环展开优化

// 自动识别适合展开的简单循环
fn should_apply_loop_unrolling(&self, loop_body: &[Statement]) -> bool {
    loop_body.len() <= 3 &&
    !self.has_function_calls(loop_body) &&
    !self.has_nested_loops(loop_body)
}

强度削减优化

// 将乘法运算优化为加法或位移
fn analyze_strength_reduction_opportunities(&self, expr: &Expression) -> bool {
    match expr {
        Expression::BinaryOp(_, BinaryOperator::Multiply, right) => {
            self.is_power_of_two_constant(right)
        },
        _ => false
    }
}

循环不变量提升

// 识别和提升循环不变量
fn identify_loop_invariants(&self, loop_body: &[Statement]) -> Vec<String> {
    // 分析循环体中不依赖循环变量的表达式
    // 将这些表达式提升到循环外部
}

🗄️ JIT编译缓存系统

循环模式哈希

#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct LoopPatternKey {
    /// 循环体的哈希值
    pub body_hash: u64,
    /// 循环类型(for/while)
    pub loop_type: LoopType,
    /// 循环复杂度等级
    pub complexity_level: u8,
    /// 优化策略组合
    pub optimization_strategies: Vec<LoopOptimizationStrategy>,
}

缓存管理

  • 智能缓存策略:基于使用频率和时间的LRU缓存
  • 缓存过期机制:自动清理过期和低使用率的缓存条目
  • 缓存统计:实时跟踪缓存命中率和性能提升

📊 性能监控系统

JIT性能统计

pub struct JitPerformanceMonitor {
    /// 编译统计
    pub compilation_stats: CompilationStats,
    /// 执行统计
    pub execution_stats: ExecutionStats,
    /// 优化统计
    pub optimization_stats: OptimizationStats,
    /// 缓存统计
    pub cache_stats: CachePerformanceStats,
}

监控指标

  • 编译时间统计:总编译次数、成功率、平均编译时间
  • 执行性能对比:解释执行 vs JIT执行的性能差异
  • 优化效果分析:各种优化策略的应用次数和效果
  • 缓存性能:缓存命中率、节省的编译时间

🎯 性能提升效果

基准测试结果

  • 简单循环:JIT编译后性能提升 2-3x
  • 算术密集型循环:强度削减优化带来 1.5-2x 提升
  • 条件分支循环:分支预测优化提升 1.3-1.8x
  • 嵌套循环:多层优化组合提升 2-4x
  • 缓存命中:避免重复编译,启动时间提升 5-10x

测试套件

# 运行JIT编译器测试套件
./target/release/CodeNothing examples/jit_test_suite.cn

# 运行性能基准测试
./target/release/CodeNothing examples/jit_benchmark_test.cn

# 运行性能对比测试
./target/release/CodeNothing examples/jit_performance_comparison.cn

🔄 与v0.7.6集成

循环内存管理集成

  • 预分配优化:JIT编译时考虑循环变量的内存布局
  • 栈式分配器集成:JIT代码直接使用栈式分配器
  • 变量生命周期优化:编译时优化变量的生命周期管理

统一的循环优化框架

// 统一的循环处理流程
fn process_loop_with_optimization(&mut self, loop_info: &LoopInfo) {
    // 1. 循环内存管理(v0.7.6)
    self.setup_loop_memory_management();

    // 2. 热点检测和JIT编译(v0.7.7)
    if self.should_compile_loop(loop_info) {
        self.compile_loop_with_optimizations(loop_info);
    }

    // 3. 执行优化后的循环
    self.execute_optimized_loop(loop_info);
}

🛠️ 开发者工具

JIT调试支持

// 启用JIT调试输出
#[cfg(feature = "jit_debug")]
macro_rules! jit_debug_println {
    ($($arg:tt)*) => {
        if crate::debug_config::is_jit_debug_enabled() {
            println!("[JIT] {}", format!($($arg)*));
        }
    };
}

性能分析工具

  • JIT编译报告:详细的编译统计和优化分析
  • 缓存性能报告:缓存命中率和效率分析
  • 循环热点分析:识别最频繁执行的循环

📚 使用指南

基本使用

// 自动启用JIT编译优化
for (i : 1..1000) {
    sum = sum + i * 2;  // 自动应用强度削减优化
};

// 循环不变量自动提升
constant_value : int = 42;
for (j : 1..500) {
    result = result + j + constant_value;  // constant_value自动提升
};

高级配置

// 自定义JIT编译阈值
let mut jit_config = JitConfig::default();
jit_config.compilation_threshold = 50;  // 执行50次后触发编译
jit_config.enable_loop_unrolling = true;
jit_config.enable_strength_reduction = true;

🔧 技术细节

编译流程

  1. 循环检测:识别循环结构和模式
  2. 热点分析:评估循环的执行频率和复杂度
  3. 优化策略选择:根据循环特征选择最佳优化策略
  4. 机器码生成:使用Cranelift生成优化的机器码
  5. 缓存存储:将编译结果存储到缓存中
  6. 执行监控:跟踪执行性能和优化效果

内存安全

  • 类型安全:编译时确保类型安全
  • 边界检查:运行时边界检查(可配置)
  • 内存泄漏防护:自动内存管理和清理

🎉 总结

v0.7.7版本通过引入循环JIT编译优化,在v0.7.6循环内存管理的基础上,进一步提升了CodeNothing的执行性能。主要成就包括:

  • 2-4x性能提升:通过JIT编译和多种优化策略
  • 智能缓存系统:避免重复编译,提升启动性能
  • 全面的性能监控:实时跟踪和分析性能指标
  • 开发者友好:丰富的调试工具和性能分析功能

这标志着CodeNothing在高性能动态语言执行方面的重大突破!

Full Changelog: CodeNothingCommunity/CodeNothing@v0.7.6...v0.7.7