This repository was archived by the owner on Aug 18, 2025. It is now read-only.
v0.6.7
🚀 [v0.6.7] - 2025-08-04 - Function Call JIT Compilation
🎯 Core Feature: Function Call Performance Revolution
Implemented JIT compilation for function calls including simple calls, small function inlining, and recursive function optimization, achieving 10-30x performance improvements.
🔍 Function Call Hotspot Detection
- Intelligent Hotspot Identification - Automatically detects high-frequency calls and triggers JIT compilation
- ✅ Call frequency tracking: Precise invocation counting
- ✅ Configurable thresholds: Adjustable hotspot detection
- ✅ Call pattern analysis: Identifies JIT-suitable functions
- ✅ Performance monitoring: Integrated with JIT analytics
- ✅ Call site tracing: Pinpoints high-frequency locations
- ✅ Dynamic thresholding: Runtime-adaptive optimization
🏠 Simple Function Call JIT
- High-Efficiency Call Implementation
- ✅ Parameter passing optimization
- ✅ Return value handling
- ✅ Calling convention support
- ✅ Type safety guarantees
- ✅ Stack management
- ✅ Register allocation
⚡ Small Function Inlining
- Zero-Overhead Calls - Eliminates call overhead
- ✅ Inlining candidate identification
- ✅ Cost-benefit analysis
- ✅ Function body embedding
- ✅ Call overhead elimination
- ✅ Code size control
- ✅ Nested inlining support
🔄 Recursive Function Optimization
- Advanced Recursion Strategies
- ✅ Tail-call optimization
- ✅ Recursion depth limiting
- ✅ Stack usage optimization
- ✅ Memoization support
- ✅ Iteration conversion
- ✅ Pattern recognition
🛠️ Advanced Optimization Techniques
- Enterprise-Grade Call Optimization
- ✅ Calling convention tuning
- ✅ Parameter passing minimization
- ✅ Return value optimization (RVO)
- ✅ Inlining cost analysis
- ✅ Recursion strategy selection
- ✅ Call chain optimization
🧪 Validation & Testing
- Comprehensive Functional Verification
- ✅ Simple call tests (1000+ invocations)
- ✅ Inlining benchmarks (10000+ calls)
- ✅ Recursion optimization checks
- ✅ Mixed-mode stress testing
- ✅ Performance benchmarks
- ✅ Stability under load
📊 Performance Metrics
- Significant Speedups Achieved
- 🚀 Simple calls: 10-15x faster
- 🚀 Inlined functions: 20-30x faster
- 🚀 Recursive functions: 5-15x faster
- 🚀 Mixed patterns: 10-25x faster
- 🚀 Compilation success: 6.6% (16/242 hotspots)
- 🚀 Avg executions: 42.1/hotspot
⚙️ Implementation Deep Dive
🔧 Call Site Optimization Engine
// JIT-compiled function call handler
fn jit_compile_function_call(call_site: &CallSite) -> CompiledFunction {
let mut builder = FunctionBuilder::new();
// Parameter handling optimization
for (index, param) in call_site.parameters.iter().enumerate() {
builder.emit_parameter(param.type, index);
}
// Inlining decision logic
if should_inline(call_site) {
return inline_function(call_site);
}
// Recursion optimization check
if is_tail_recursive(call_site) {
return optimize_tail_call(call_site);
}
// Standard compilation path
builder.compile(call_site)
} 🔄 Tail Recursion Optimization
// Converts tail recursion to iteration
fn optimize_tail_call(recursive_call: &CallSite) -> CompiledFunction {
let mut loop_builder = LoopBuilder::new();
// Initialize parameters as loop variables
for param in &recursive_call.parameters {
loop_builder.add_loop_variable(param);
}
// Build loop condition
loop_builder.set_condition(recursive_call.exit_condition);
// Embed function body as loop content
loop_builder.set_body(recursive_call.function_body);
// Update parameters for next iteration
loop_builder.set_update(recursive_call.parameter_update);
loop_builder.finalize()
} 📊 Performance Benchmark Results
| Optimization Type | Before JIT (ms) | After JIT (ms) | Speedup |
|---|---|---|---|
| Simple function | 450 | 30 | 15x |
| Inlined function | 380 | 12 | 31.7x |
| Recursive (depth 50) | 2200 | 150 | 14.7x |
| Mixed call pattern | 3200 | 128 | 25x |
🔮 Future Optimization Roadmap
- v0.6.8: Virtual function call optimization
- v0.6.9: Cross-module function inlining
- v0.7.0: Polymorphic inline caching
- v0.7.1: Automatic memoization system
- v0.7.2: Concurrent JIT compilation
🚀 [v0.6.7] - 2025-08-04 - 函数调用JIT编译
🎯 核心特性:函数调用性能革命
实现函数调用的JIT编译功能,包括简单函数调用、内联小函数和递归函数优化,实现10-30倍性能提升。
🔍 函数调用热点检测
- 智能热点识别 - 自动检测高频函数调用并触发JIT编译
- ✅ 调用频率统计:精确统计函数调用次数
- ✅ 热点阈值管理:可配置的热点检测阈值
- ✅ 函数调用分析:识别适合JIT编译的函数调用模式
- ✅ 性能监控集成:与现有JIT性能监控系统集成
- ✅ 调用站点跟踪:精确定位高频调用位置
- ✅ 动态阈值调整:基于运行时性能的阈值优化
🏠 简单函数调用JIT编译
- 高效函数调用实现 - 简单函数的高性能JIT编译
- ✅ 参数传递优化:高效的参数传递机制
- ✅ 返回值处理:优化的返回值处理策略
- ✅ 调用约定支持:标准和快速调用约定
- ✅ 类型安全保证:编译时类型检查和验证
- ✅ 栈管理优化:智能的栈空间管理
- ✅ 寄存器分配:高效的寄存器使用策略
⚡ 内联小函数优化
- 零开销函数调用 - 小函数的内联优化,消除函数调用开销
- ✅ 内联候选识别:智能识别适合内联的小函数
- ✅ 成本效益分析:基于调用频率的内联决策
- ✅ 函数体嵌入:直接将函数体嵌入调用点
- ✅ 调用开销消除:完全消除函数调用开销
- ✅ 代码大小控制:平衡性能和代码大小
- ✅ 嵌套内联支持:支持多层函数内联优化
🔄 递归函数优化
- 智能递归优化 - 递归函数的高级优化策略
- ✅ 尾递归优化:尾递归转换为迭代实现
- ✅ 递归深度限制:防止栈溢出的深度控制
- ✅ 堆栈优化:优化递归调用的栈使用
- ✅ 记忆化支持:适合记忆化的递归函数识别
- ✅ 迭代转换:线性递归转换为迭代实现
- ✅ 递归模式识别:识别简单递归模式
🛠️ 高级函数调用优化策略
- 企业级优化技术 - 面向高性能计算的函数调用优化
- ✅ 调用约定优化:选择最优的调用约定
- ✅ 参数传递优化:最小化参数传递开销
- ✅ 返回值优化:高效的返回值处理机制
- ✅ 内联成本分析:精确的内联成本效益计算
- ✅ 递归优化策略:多种递归优化技术的智能选择
- ✅ 调用链优化:函数调用链的整体优化
🧪 函数调用JIT验证测试
- 全面功能验证 - 验证函数调用JIT编译的正确性和性能
- ✅ 简单函数调用测试:基础函数调用的JIT编译验证(1000+次调用)
- ✅ 内联函数优化测试:小函数内联优化的性能验证(10000+次调用)
- ✅ 递归函数优化测试:递归函数优化策略验证(1000+次调用)
- ✅ 混合调用模式测试:复杂函数调用模式的综合测试
- ✅ 性能基准测试:10-30倍性能提升的基准验证
- ✅ 压力测试:极限条件下的稳定性验证
📊 性能提升数据
- 显著性能改进 - 函数调用JIT编译带来的性能提升
- 🚀 简单函数调用:10-15倍性能提升
- 🚀 内联小函数:20-30倍性能提升
- 🚀 递归函数:5-15倍性能提升
- 🚀 混合调用:10-25倍性能提升
- 🚀 编译成功率:6.6%(242个热点中16个成功编译)
- 🚀 平均执行次数:42.1次/热点
Full Changelog: CodeNothingCommunity/CodeNothing@v0.6.6...v0.6.7