forked from qiyangku/FHMC
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added main_bimodal.m for sampling bimodal distribution
- Loading branch information
Showing
2 changed files
with
295 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,273 @@ | ||
function main_bimodal(option,varargin) | ||
|
||
switch option | ||
case 'plot_only' | ||
plot_bimodal(varargin{1},[2]); | ||
return | ||
case 'analysis_only' | ||
post_process_bimodal(varargin{1}); | ||
return | ||
case 'sample_path' | ||
gen_sample_path_bimodal; | ||
otherwise | ||
exit_time; | ||
end | ||
end | ||
|
||
|
||
function gen_sample_path_bimodal(~) | ||
|
||
%p.ntrials = 8*3; %for parallel processing,use multiples of 8 | ||
p.target = 'bimodal'; | ||
p.sigma = 0.32; | ||
p.dt = 1e-3; %1e-2 is no good for calculating Riesz derivative | ||
T = 1e4; | ||
|
||
%AIM: 1. Sample trajectory. 2. histogram | ||
|
||
a = [1.2 2]; | ||
p.location = 2.5; %modal location | ||
solver = {'Hamiltonian2','Langevin'}; %'Hamiltonian','Underdamped'}; | ||
%for accurate results don't need the other two... too slow | ||
|
||
X = zeros(T/p.dt,length(solver),length(a)); %save 1 example is ok | ||
|
||
disp('Generating raw data...') | ||
for i = 1:length(a) %group fractional/nonfractional together as this is less familiar to people | ||
aa = a(i); | ||
tic | ||
for j = 1:length(solver) | ||
p.methods.solver = solver{j}; | ||
|
||
disp('Simulating...') | ||
%parfor k = 1:p.ntrials | ||
[temp,t] = fHMC(T,aa,p); | ||
%end | ||
|
||
clc | ||
fprintf('Solver: %u/%u\n',j,length(solver)) | ||
fprintf('alpha: %u/%u\n',i,length(a)) | ||
toc | ||
|
||
X(:,j,i) = temp; | ||
end | ||
|
||
end | ||
|
||
n = floor(T/p.dt); %number of samples | ||
t = (0:n-1)*p.dt; | ||
|
||
save main_bimodal_raw_data_sample_path.mat T a solver X t p | ||
end | ||
|
||
function exit_time() | ||
|
||
%x0 = linspace(0.5,2.5,21); %locations of bimodal distribution | ||
%a = [1.2 2]; | ||
%p.T = 1e3; | ||
|
||
x0 = linspace(0.5,1.5,21); | ||
a = [2]; %do gaussian only | ||
p.T = 1e4; %do more time since time is longer | ||
|
||
solver = {'Hamiltonian2','Langevin'}; | ||
p.target = 'bimodal'; | ||
p.ntrials = 8*3; | ||
p.dt = 1e-3; | ||
p.sigma = 0.32; | ||
|
||
flag = true(size(a)); | ||
tic | ||
|
||
|
||
|
||
binedge = linspace(-5,5,101); | ||
dx = (binedge(2)-binedge(1))*0.5; | ||
bin = binedge(2:end) - dx; | ||
|
||
H = zeros(length(bin), length(x0),length(solver),length(a)); %histogram | ||
T = zeros(length(x0),length(solver),length(a),p.ntrials); | ||
|
||
tic | ||
disp('Beginning simulation...') | ||
for m = 1:length(solver) | ||
p.methods.solver = solver{m}; | ||
|
||
for i = 1:length(x0) %modal separation | ||
p.location = x0(i); %2.5; | ||
|
||
for k = 1:length(a) | ||
|
||
if ~flag(k) | ||
T(i,m,k,:) = NaN; | ||
continue | ||
end | ||
|
||
aa = a(k); | ||
TT = p.T; | ||
|
||
h = zeros(length(bin), p.ntrials); | ||
texit = zeros(1,p.ntrials); | ||
|
||
parfor j = 1:p.ntrials | ||
[X,t] = fHMC(TT,aa,p); | ||
h(:,j) = histcounts(X,binedge,'normalization','pdf'); | ||
try | ||
texit(j) = mean([TrapTime(X>0);TrapTime(X<0)]); %mean exit time | ||
catch ME | ||
texit(j) = NaN; | ||
disp('Unknown error!') | ||
end | ||
end | ||
H(:,i,m,k) = mean(h,2); | ||
T(i,m,k,:) = texit; | ||
|
||
if all(isnan(texit)) %T(k,i,j)>1e5 %if mean trap time is too long, skip subsequent simulations | ||
%nan => TrapTime output empty array | ||
flag(k) = false; | ||
end | ||
|
||
clc | ||
fprintf('Solver: %u/%u\n',m,length(solver)) | ||
fprintf('alpha: %u/%u\n',k,length(a)) | ||
fprintf('Mode location: %u/%u\n',i,length(x0)) | ||
toc | ||
|
||
end | ||
|
||
end | ||
end | ||
|
||
%save main_bimodal_mean_exit_time.mat H bin T p x0 a solver | ||
save main_bimodal_mean_exit_time_gaussian.mat H bin T p x0 a solver | ||
|
||
end | ||
|
||
|
||
function plot_bimodal(Q,flag) | ||
|
||
close all | ||
clc | ||
|
||
if any(flag==0) | ||
load main_bimodal_mean_exit_time_gaussian.mat T x0 p | ||
%load exit_time_HMC_vs_FHMC_corrected.mat T x0 | ||
T(T==0)=nan; | ||
T = mean(T,4)*p.dt; | ||
x0 = x0*2;x0=x0(:); | ||
xx = linspace(x0(1),x0(end),101); | ||
|
||
f0 = myfigure; | ||
for i =2:-1:1 | ||
indx = ~isnan(T(:,i)); | ||
linestyle = {'--','-'}; | ||
markerstyle = {'x','o'}; | ||
try | ||
f = fit(x0(indx),T(indx,i),'exp1'); | ||
yy = f(xx); | ||
plot(xx(yy<100),yy(yy<100),linestyle{i},'color',mycolor(1,i+2),'HandleVisibility','off','linewidth',1) | ||
hold on | ||
catch | ||
end | ||
plot(x0(indx),T(indx,i),markerstyle{i},'color',mycolor(1,i+2),'linewidth',1); | ||
end | ||
|
||
load main_bimodal_mean_exit_time.mat T x0 p | ||
T(T==0)=nan; | ||
T = mean(T,4)*p.dt; | ||
x0 = x0*2;x0=x0(:); | ||
xx = linspace(x0(1),x0(end),101); | ||
|
||
for i =2:-1:1 | ||
f = fit(x0(:),T(:,i,1),'poly1'); | ||
linestyle = {'--','-'}; | ||
markerstyle = {'x','o'}; | ||
plot(xx,f(xx),linestyle{i},'color',mycolor(1,i),'HandleVisibility','off','linewidth',1) | ||
hold on | ||
%indx = 1:2:length(x0); | ||
plot(x0,T(:,i,1),markerstyle{i},'color',mycolor(1,i),'linewidth',1); | ||
end | ||
|
||
|
||
subplotmod; | ||
|
||
xlim([1 5]) | ||
ylim([0 100]) | ||
xlabel('Modal Separation') | ||
ylabel('Mean Exit Time') | ||
|
||
legend('LD','HD','FLD','FHD','box','off','location','ne') | ||
offsetAxes; | ||
export_fig(f0,'figures/fig_main_bimodal_met.pdf','-pdf','-nocrop','-transparent','-painters'); | ||
end | ||
|
||
if any(flag==1) | ||
%load main_bimodal_raw_data_sample_path.mat | ||
f1 = myfigure; | ||
ttl = {'Fractional Hamiltonian Dynamics','Fractional Langevin Dynamics','Hamiltonian Dynamics','Langevin Dynamics'}; | ||
|
||
Tmax = 2e2; | ||
tindx = (1:40:(Tmax/Q.p.dt))+2e4; | ||
|
||
for k = 1:4 | ||
subplot(4,1,k) | ||
[j,i]=ind2sub([2 2],k); | ||
plot(Q.t(tindx)-Q.t(tindx(1)),Q.X(tindx,j,i),'.','color',mycolor(1,k),'markersize',1); | ||
title(ttl(k)) | ||
|
||
if k<4 | ||
set(gca,'xtick',[],'XColor','none'); | ||
else | ||
xlabel('t') | ||
end | ||
ylabel('x_t') | ||
%subplotmod; | ||
box off | ||
set(gca,'TickDir','out') | ||
%hold on | ||
%plot(xx,yy,'k--','linewidth',1.5) | ||
ylim([-4 4]) | ||
xlim([0 Tmax]) | ||
set(gca,'linewidth',1); | ||
|
||
end | ||
pos =get(f1,'Position'); | ||
set(gcf,'position',[pos(1) pos(2) pos(3) 600]) | ||
|
||
export_fig(f1,'figures/fig_main_bimodal_sample_path.pdf','-pdf','-nocrop','-transparent','-painters'); | ||
end | ||
|
||
if any(flag ==2) %Histogram | ||
f2 = myfigure; | ||
gs1 = makedist('normal','mu',2.5,'sigma',0.32); | ||
gs2 = makedist('normal','mu',-2.5,'sigma',0.32); | ||
|
||
xx = linspace(-4,4,101); | ||
yy = 0.5*pdf(gs1,xx)+0.5*pdf(gs2,xx); | ||
|
||
binedge = linspace(-4,4,101); | ||
bin = (binedge(2)-binedge(1))*0.5 + binedge(1:end-1); | ||
|
||
for k = 1:4 | ||
subplot(4,1,k) | ||
[j,i]=ind2sub([2 2],k); | ||
hc = histcounts(Q.X(:,j,i),binedge,'normalization','pdf'); | ||
%bar(Q.bin,Q.H(:,j,i),1,'FaceColor',mycolor(1,k),'EdgeColor',mycolor(1,k),'FaceAlpha',0.5); | ||
bar(bin,hc,1,'FaceColor',mycolor(1,k),'EdgeColor',mycolor(1,k),'FaceAlpha',0.5);hold on | ||
set(gca,'xtick',[]) | ||
set(gca,'ytick',[]) | ||
hold on | ||
plot(xx,yy,'k','linewidth',1) | ||
if k<0;%k <2.5 | ||
ylim([0 1.5/2]) | ||
else | ||
ylim([0 1.5]) | ||
end | ||
xlim([-4 4]) | ||
set(gcf,'position',[100 100 200 600]) | ||
end | ||
%export_fig(f2,'figures/fig_main_unimodal_postprocess_histogram.pdf','-pdf','-nocrop','-transparent','-painters'); | ||
print(gcf, '-dpdf', 'figures\fig_main_bimodal_histogram.pdf'); | ||
end | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters