The aim of the LMMsolver
package is to provide an efficient and
flexible system to estimate variance components using restricted maximum
likelihood or REML (Patterson and Thompson 1971), for models where the
mixed model equations are sparse. An important feature of the package is
smoothing with P-splines (Eilers and Marx 1996). The sparse mixed model
P-splines formulation (Boer 2023) is used, which makes the computations
fast. The computational advantage of the sparse mixed model formulation
is especially clear for two-dimensional smoothing (Boer 2023; Carollo et
al. 2024).
- Install from CRAN:
install.packages("LMMsolver")
- Install latest development version from GitHub (requires remotes package):
remotes::install_github("Biometris/LMMsolver", ref = "develop", dependencies = TRUE)
As an example of the functionality of the package we use the USprecip
data set in the spam
package (Furrer and Sain 2010).
library(LMMsolver)
library(ggplot2)
## Get precipitation data from spam
data(USprecip, package = "spam")
## Only use observed data.
USprecip <- as.data.frame(USprecip)
USprecip <- USprecip[USprecip$infill == 1, ]
head(USprecip[, c(1, 2, 4)], 3)
#> lon lat anomaly
#> 6 -85.95 32.95 -0.84035
#> 7 -85.87 32.98 -0.65922
#> 9 -88.28 33.23 -0.28018
A two-dimensional P-spline can be defined with the spl2D()
function,
with longitude and latitude as covariates, and anomaly (standardized
monthly total precipitation) as response variable:
obj1 <- LMMsolve(fixed = anomaly ~ 1,
spline = ~spl2D(x1 = lon, x2 = lat, nseg = c(41, 41)),
data = USprecip)
The spatial trend for the precipitation can now be plotted on the map of
the USA, using the predict
function of LMMsolver
:
lon_range <- range(USprecip$lon)
lat_range <- range(USprecip$lat)
newdat <- expand.grid(lon = seq(lon_range[1], lon_range[2], length = 200),
lat = seq(lat_range[1], lat_range[2], length = 300))
plotDat <- predict(obj1, newdata = newdat)
plotDat <- sf::st_as_sf(plotDat, coords = c("lon", "lat"))
usa <- sf::st_as_sf(maps::map("usa", regions = "main", plot = FALSE))
sf::st_crs(usa) <- sf::st_crs(plotDat)
intersection <- sf::st_intersects(plotDat, usa)
plotDat <- plotDat[!is.na(as.numeric(intersection)), ]
ggplot(usa) +
geom_sf(color = NA) +
geom_tile(data = plotDat,
mapping = aes(geometry = geometry, fill = ypred),
linewidth = 0,
stat = "sf_coordinates") +
scale_fill_gradientn(colors = topo.colors(100))+
labs(title = "Precipitation (anomaly)",
x = "Longitude", y = "Latitude") +
coord_sf() +
theme(panel.grid = element_blank())
Further examples can be found in the vignette.
vignette("Solving_Linear_Mixed_Models")
Boer, Martin P. 2023. “Tensor Product P-Splines Using a Sparse Mixed Model Formulation.” Statistical Modelling 23 (5-6): 465–79. https://doi.org/10.1177/1471082X231178591.
Carollo, Angela, Paul Eilers, Hein Putter, and Jutta Gampe. 2024. “Smooth Hazards with Multiple Time Scales.” Statistics in Medicine. https://doi.org/10.1002/sim.10297.
Eilers, PHC, and BD Marx. 1996. “Flexible smoothing with B-splines and penalties.” Stat. Sci. https://www.jstor.org/stable/2246049.
Furrer, R, and SR Sain. 2010. “spam: A sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields.” J. Stat. Softw. https://core.ac.uk/download/pdf/6340272.pdf.
Patterson, HD, and R Thompson. 1971. “Recovery of inter-block information when block sizes are unequal.” Biometrika. https://doi.org/10.1093/biomet/58.3.545.