Skip to content

Commit

Permalink
Merge pull request #158 from BayAreaMetro/network-fidelity
Browse files Browse the repository at this point in the history
Network fidelity
  • Loading branch information
i-am-sijia authored Jul 30, 2024
2 parents 975368e + 0a0b632 commit 172a183
Show file tree
Hide file tree
Showing 3 changed files with 311 additions and 2 deletions.
71 changes: 71 additions & 0 deletions scripts/compare_skims.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# %%
import pandas as pd
import openmatrix as omx
from pathlib import Path

import numpy as np

network_fid_path = Path(
r"Z:\MTC\US0024934.9168\Task_3_runtime_improvements\3.1_network_fidelity\run_result"
)
# network_fid_path = Path(r"D:\TEMP\TM2.2.1.1-0.05")

# %%


def read_matrix_as_long_df(path: Path, run_name):
run = omx.open_file(path, "r")
am_time = np.array(run["AM_da_time"])
index_lables = list(range(am_time.shape[0]))
return (
pd.DataFrame(am_time, index=index_lables, columns=index_lables)
.stack()
.rename(run_name)
.to_frame()
)


a = read_matrix_as_long_df(
r"D:\TEMP\TM2.2.1.1-New_network_rerun\TM2.2.1.1_new_taz\skim_matrices\highway\HWYSKMAM_taz.omx",
"test",
)
# %%
all_skims = []
for skim_matrix_path in network_fid_path.rglob("*AM_taz.omx"):
print(skim_matrix_path)
run_name = skim_matrix_path.parts[6]
all_skims.append(read_matrix_as_long_df(skim_matrix_path, run_name))

all_skims = pd.concat(all_skims, axis=1)
# %%
# %%%
all_skims.to_csv(
r"Z:\MTC\US0024934.9168\Task_3_runtime_improvements\3.1_network_fidelity\output_summaries\skim_data\skims.csv"
)
# %%
# %%
import geopandas as gpd
from importlib import Path
import pandas as pd

# %%
output_paths_to_consolidate = Path(r"D:\TEMP\output_summaries")
all_files = []
for file in output_paths_to_consolidate.glob("*_roadway_network.geojson"):
run_name = file.name[0:5]
print(run_name)
specific_run = gpd.read_file(file)
specific_run["run_number"] = run_name
all_files.append(specific_run)
# %%
all_files = pd.concat(all_files)
# %%
all_files.to_file(output_paths_to_consolidate / "all_runs_concat.gdb")

# %%

all_files.drop(columns="geometry").to_csv(output_paths_to_consolidate / "data.csv")
# %%
to_be_shape = all_files[["geometry", "model_link_id"]].drop_duplicates()
print("outputting")
to_be_shape.to_file(output_paths_to_consolidate / "geom_package")
238 changes: 238 additions & 0 deletions scripts/compile_model_runs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,238 @@
# %%
import geopandas as gpd
import pandas as pd
import numpy as np
from pathlib import Path
from tqdm import tqdm
from shapely.geometry import LineString

input_dir = Path(
r"Z:\MTC\US0024934.9168\Task_3_runtime_improvements\3.1_network_fidelity\run_result"
)
output_dir = input_dir / "consolidated_3"


# in_file = next(input_dir.rglob('emme_links.shp'))
# print("reading", in_file)
# input2 = gpd.read_file(in_file, engine="pyogrio", use_arrow=True)
# #%%
# print("writing")
# input[["#link_id", "geometry"]].to_file(output_dir / "test_geom.geojson")

scenarios_to_consolidate = (11, 12, 13, 14, 15)
runs_to_consolidate = (3, 4)
# %%


def read_file_and_tag(
path: Path,
columns_to_filter=(
"@ft",
"VOLAU",
"@capacity",
"run_number",
"scenario_number",
"#link_id",
"geometry",
),
) -> pd.DataFrame:
scenario = file.parent.stem
scenario_number = int(scenario.split("_")[-1])
if scenario_number not in scenarios_to_consolidate:
return None

run = file.parent.parent.stem
run_number = int(run.split("_")[-1])
if run_number not in runs_to_consolidate:
return None

return_gdf = gpd.read_file(path, engine="pyogrio")

return_gdf["scenario"] = scenario
return_gdf["scenario_number"] = scenario_number
return_gdf["run"] = run
return_gdf["run_number"] = run_number

if "VOLAU" not in return_gdf.columns:
print(return_gdf.columns)
print("... No VOLAU, filling with zero")
return_gdf["VOLAU"] = 0

return_gdf = return_gdf[list(columns_to_filter)]

# assert return_gdf["#link_id"].is_unique

return return_gdf


def get_linestring_direction(linestring: LineString) -> str:
if not isinstance(linestring, LineString) or len(linestring.coords) < 2:
raise ValueError("Input must be a LineString with at least two coordinates")

start_point = linestring.coords[0]
end_point = linestring.coords[-1]

delta_x = end_point[0] - start_point[0]
delta_y = end_point[1] - start_point[1]

if abs(delta_x) > abs(delta_y):
if delta_x > 0:
return "East"
else:
return "West"
else:
if delta_y > 0:
return "North"
else:
return "South"


# %%

print("Reading Links...", end="")
all_links = []
for file in tqdm(input_dir.rglob("run_*/Scenario_*/emme_links.shp")):
print(file)
all_links.append(read_file_and_tag(file))
links_table = pd.concat(all_links)

print("done")
# %%
scen_map = {11: "EA", 12: "AM", 13: "MD", 14: "PM", 15: "EV"}


def get_return_first_gem(row):
geom_columns = [col for col in row.index if "geometry" in col]
return [
row[col]
for col in geom_columns
if (row[col] is not None) and (row[col] != np.NAN)
][0]


def combine_tables(dfs, columns_same):
return_frame = dfs[0][columns_same]

for df in dfs:
run_number = df["run_number"].iloc[0]

scen_number = df["scenario_number"].iloc[0]
scen_number = scen_map[scen_number]
df["saturation"] = df["VOLAU"] / df["@capacity"]

df = df[["#link_id", "@capacity", "VOLAU", "geometry", "@ft"]].rename(
columns={
"@capacity": f"capacity_run{run_number}_scen{scen_number}",
"VOLAU": f"@volau_run{run_number}_scen{scen_number}",
"saturation": f"@saturation_run{run_number}_scen{scen_number}",
"geometry": f"geometry_run{run_number}_scen{scen_number}",
"@ft": f"ft_run{run_number}_scen{scen_number}",
}
)
# if there are link_ids that are not in the right frame
return_frame = return_frame.merge(
df, how="outer", on="#link_id", validate="1:1"
)
geometry = return_frame.apply(get_return_first_gem, axis=1)
# remove geometries that are not main geometry
return_frame = return_frame.drop(
columns=[col for col in return_frame.columns if "geometry_" in col]
)
return_frame["geometry"] = geometry

return return_frame


all_links_no_none = [
links
for links in all_links
if (links is not None) and (links["#link_id"].is_unique)
]
links_wide_table = combine_tables(all_links_no_none, ["#link_id", "geometry"])

links_wide_table["direction"] = links_wide_table["geometry"].apply(
get_linestring_direction
)
# %%
ft_cols = [col for col in links_wide_table.columns if "ft_" in col]

links_wide_table["ft"] = links_wide_table[ft_cols].max(axis=1)
links_wide_table = links_wide_table.drop(columns=ft_cols)

# %%
links_wide_table.to_file(
Path(
r"Z:\MTC\US0024934.9168\Task_3_runtime_improvements\3.1_network_fidelity\output_summaries\all_links_data"
)
/ "all_data_wide.geojson"
)


# %%
num_iter = {(3, 11): 3, (3, 12): 10, (3, 13): 10, (3, 14): 19, (3, 15): 4, (4, 12): 20}
# %%
all_links_no_none = [
links for links in all_links if (links is not None)
] # and (links["#link_id"].is_unique)]
for df in all_links_no_none:
df["saturation"] = df["VOLAU"] / df["@capacity"]
ft6_sat = [
(
link["run_number"].iloc[0],
link["scenario_number"].iloc[0],
(link.loc[link["@ft"] == 6, "saturation"] > 1).mean(),
)
for link in all_links_no_none
]

y = [val for val in num_iter.values()]
x = [x[-1] for x in ft6_sat]
col = [val[0] for val in num_iter.keys()]

# %%
import matplotlib.pyplot as plt

plt.scatter(x, y, c=col)

# Calculate the trendline
z = np.polyfit(x, y, 1)
p = np.poly1d(z)

# Plot the trendline
plt.plot(x, p(x), color="red")

plt.xlabel("proportion of ft 6 with saturation > 1")
plt.ylabel("number of iterations to solve")
plt.title("Number of iterations to solve (relative gap = 0.05)")
plt.show()
# %%
import matplotlib.pyplot as plt

data = [links_wide_table[col] for col in links_wide_table.iloc[:, 2:].columns]

fig = plt.boxplot(data)
fig.show()

# --------------------------------------------------------------------------
# %%
links_table["direction"] = links_table["geometry"].apply(get_linestring_direction)
# %%
links_table.to_file(output_dir / "all_data.geojson", index=False)


# %%
def get_link_counts(df: pd.DataFrame):
ret_val = df.value_counts("@ft").sort_index().to_frame().T
total = ret_val.sum(axis=1)
total_minus_8 = total - ret_val[8.0].iloc[0]
ret_val["total"] = total
ret_val["total_minus_8"] = total_minus_8

ret_val["run_number"] = df["run_number"].iloc[0]
ret_val["scenario_number"] = df["scenario_number"].iloc[0]
return ret_val


pd.concat([get_link_counts(df) for df in all_links]).sort_values(
by=["run_number", "scenario_number"]
)
4 changes: 2 additions & 2 deletions tm2py/components/network/create_tod_scenarios.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ def _create_highway_scenarios(self):
{
"scenarios": 1 + n_time_periods,
"full_matrices": 9999,
"extra_attribute_values": 60000000,
"extra_attribute_values": 100000000,
}
)
# create VDFs & set cross-reference function parameters
Expand Down Expand Up @@ -628,7 +628,7 @@ def _set_capclass(network):
area_type = link["@area_type"]
if area_type < 0:
link["@capclass"] = -1
elif (link["@ft"] == 99) & (link["@assignable"] == 1):
elif link["@ft"] == 99:
link["@capclass"] = 10 * area_type + 7
else:
link["@capclass"] = 10 * area_type + link["@ft"]
Expand Down

0 comments on commit 172a183

Please sign in to comment.