The next generation of Optimos. A Resource, Roster and Batching optimizer using Prosimos simulator.
This report includes data for the following agents, models, and modes. Click on a model to jump to its section. Refer to the Re-running the evaluation & getting the results section to see how to re-run the evaluation and get the results.
- Proximal Policy Optimization (PPO): Heurisic-Guided Reinforce Learning using Proximal Policy Optimization (Acronym in paper: RL+).
- Proximal Policy Optimization Random (PPO Random): NON-Heuristic-Guided Reinforce Learning using standard Proximal Policy Optimization approach (Acronym in paper: RL-).
- Simulated Annealing (SA): Heuristic-Guided Simulated Annealing (Acronym in paper: SA+).
- Simulated Annealing Random (SA Random): NON-Heuristic-Guided Simulated Annealing (Acronym in paper: SA-).
- Tabu Search: Heuristic-guided Hill-Climbing approach, accepting non-optimal solutions in a given radius (Acronym in paper: HC+).
- Tabu Search Random (Tabu Random): NON-Heuristic-Guided Hill-Climbing, accepting non-optimal solutions in a given radius (Acronym in paper: HC-).
- Reference: Corresponds to the reference Pareto front, built considering all the Pareto-optimal solutions among all the batching policies produced by any of the six agents described before (i.e., RL+, SA+, HC+, RL-, SA-, and HC-).
- Reference Optimos: Corresponds to the reference Pareto front, built considering only the Pareto-optimal solutions among all the batching policies produced by any heuristic-guided approaches (i.e., RL+, SA+, and HC+). (Acronym in the paper ++).
- Reference Random: Corresponds to the reference Pareto front, built considering only the Pareto-optimal solutions among all the batching policies produced by any non-heuristic-guided approach (i.e., RL-, SA-, and HC-). (Acronym in the paper --).
- Bpi Challenge 2012
- Bpi Challenge 2017
- Bpi Challenge 2019
- Callcentre
- Consulta Data Mining
- Gov
- Insurance
- Production
- Sepsis Das
- Trafic Das
- Easy -> (i.e., Parallel batching execution) Activities in the batch are executed concurrently. Processing time is amortized across instances so that batch execution time equals the time of the longest individual activity duration in the batch.
- Hard -> (i.e., Sequential batching execution) Activities in the batch are executed sequentially, i.e., each activity starts after the previous one is completed. The processing time of the batch is the cumulative sum of all the independent activities included.
- Mid -> (i.e., Hybrdid batching execution) Balances parallel and sequential execution by scaling processing time under sequential execution by a 0.5 factor.
Below is an explanation of the metrics used in this report. Note that one simulation (or 'Solution') corresponds to one step on the x-axis.
- Pareto Front Size: Number of solutions in the current Pareto Front.
- Explored Solutions: Total number of solutions for which all neighbors have been explored.
- Potential New Base Solutions: Potential new base solution within a small error radius for Tabu Search or within the temperature radius for Simulated Annealing.
- Average Cycle Time: Average cycle time (from first enablement to the end of last activity) of all solutions in the current Pareto Front.
- Min Cycle Time: Minimum cycle time among all solutions in the current Pareto Front.
- Average Batch Size: Average number of tasks per batch (with a non batched task having a batch size of 1).
- Iteration Number: In one iteration, multiple mutations are performed. Depending on the agent, the solutions will be treated differently. Note that the number of solutions per iteration is not the same for all agents.
- Time per Step: Average wall time per simulation step computed from differences between consecutive steps.
- Total Optimization Time: Total wall clock time from the first to the last iteration (in minutes)
- Hyperarea (HA): Measures convergence and distribution. Hyperarea is the area in the objective space dominated by a Pareto front delimited by a point, which we set as the maximum cost and time among all the solutions explored. If PRef is available, the hyperarea ratio is a real number, between 0 and 1, given by HA(ParetoAprox)/HA(ParetoRef). A higher hyperarea ratio means a better PAprox, being 1 the maximum possible ratio indicating that PAprox dominates the same solution space as PRef.
- Averaged Hausdorff Distance: Measures convergence as the mean root mean squared (RMS) distance between ParetoAprox and ParetoRef. A lower value means a better convergence.
- Purity: Measures the proportion of ParetoAprox solutions included in ParetoRef. A higher purity indicates a better ParetoAprox, with a maximum value of 1.
- Delta: Measures how well the solutions are spread and evenly distributed. It checks whether the solutions cover the full extent of the objective space (spread) and whether the spacing between them is uniform (distribution). A lower value of Delta means a better ParetoAprox.
BP12 (Acronym in the paper) - It is a loan application process from a Dutch financial institution. This fragment contains only activities with defined start and end timestamps. Access Link: BPI Challenge 2012.
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference | 58,00 | 46,00 | 38,00 |
Reference Random | 37,00 | 39,00 | 33,00 |
Reference Optimos | 53,00 | 40,00 | 35,00 |
SA | 39,00 | 35,00 | 26,00 |
Tabu Search | 35,00 | 17,00 | 25,00 |
PPO | 46,00 | 41,00 | 22,00 |
Tabu Random | 8,00 | 15,00 | 16,00 |
SA Random | 26,00 | 20,00 | 18,00 |
PPO Random | 41,00 | 38,00 | 28,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,98 | 1,00 | 1,00 |
Reference Optimos | 1,00 | 0,99 | 1,00 |
SA | 0,96 | 0,97 | 1,00 |
Tabu Search | 0,92 | 0,94 | 1,00 |
PPO | 1,00 | 0,99 | 1,00 |
Tabu Random | 0,68 | 0,95 | 1,00 |
SA Random | 0,86 | 0,95 | 1,00 |
PPO Random | 0,98 | 1,00 | 1,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 9.987,18 | 3.703,22 | 3.415,36 |
Reference Optimos | 272,36 | 5.523,63 | 10.161,03 |
SA | 15.408,62 | 5.939,53 | 29.585,14 |
Tabu Search | 9.883,80 | 6.427,54 | 29.616,95 |
PPO | 306,40 | 5.514,86 | 10.727,28 |
Tabu Random | 15.738,85 | 7.246,00 | 15.877,69 |
SA Random | 17.805,24 | 6.174,27 | 22.952,28 |
PPO Random | 9.989,72 | 3.703,29 | 11.101,33 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,99 | 1,25 | 1,23 |
Reference Optimos | 1,66 | 1,15 | 1,16 |
SA | 1,03 | 1,04 | 1,04 |
Tabu Search | 1,03 | 1,16 | 1,01 |
PPO | 1,64 | 1,14 | 1,01 |
Tabu Random | 1,19 | 1,05 | 1,44 |
SA Random | 1,27 | 1,12 | 1,03 |
PPO Random | 1,00 | 1,25 | 1,13 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,28 | 0,46 | 0,37 |
Reference Optimos | 0,72 | 0,54 | 0,63 |
SA | 0,19 | 0,24 | 0,24 |
Tabu Search | 0,17 | 0,09 | 0,34 |
PPO | 0,33 | 0,22 | 0,05 |
Tabu Random | 0,00 | 0,00 | 0,11 |
SA Random | 0,00 | 0,00 | 0,08 |
PPO Random | 0,26 | 0,46 | 0,18 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 1.218.264,58 | 1.218.354,45 | 1.218.264,60 |
Reference | 1.231.617,45 | 1.393.767,17 | 2.425.820,43 |
Reference Random | 1.212.931,15 | 1.436.835,71 | 3.367.277,38 |
Reference Optimos | 1.233.554,65 | 1.435.539,34 | 5.363.983,24 |
SA | 1.304.858,77 | 1.369.175,11 | 1.426.754,04 |
Tabu Search | 1.228.740,83 | 1.356.749,39 | 1.568.009,15 |
PPO | 1.221.187,53 | 1.431.114,38 | 6.589.850,99 |
Tabu Random | 1.259.535,84 | 1.370.966,56 | 1.784.573,13 |
SA Random | 1.353.113,82 | 1.371.905,30 | 1.606.825,51 |
PPO Random | 1.212.012,24 | 1.433.278,06 | 4.959.761,62 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 1.218.264,58 | 1.218.354,45 | 1.218.264,60 |
Reference | 1.166.893,73 | 1.170.000,00 | 1.166.304,58 |
Reference Random | 1.163.321,38 | 1.170.000,00 | 1.166.304,58 |
Reference Optimos | 1.163.504,07 | 1.210.386,51 | 1.170.135,16 |
SA | 1.209.128,12 | 1.213.770,44 | 1.210.526,41 |
Tabu Search | 1.211.702,72 | 1.213.581,21 | 1.217.329,58 |
PPO | 1.163.504,07 | 1.170.003,63 | 1.170.000,00 |
Tabu Random | 1.170.000,00 | 1.170.000,00 | 1.211.329,39 |
SA Random | 1.170.000,00 | 1.170.000,00 | 1.211.040,39 |
PPO Random | 1.163.321,38 | 1.170.000,00 | 1.166.304,58 |
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 9991 | 1020 | 1.22262e+06 | 1.1635e+06 | 17.8497 | 10000 | 4.33396 | 549min (for 9991 Steps) |
|
Proximal Policy Optimization Random | 9991 | 1347 | 1.21544e+06 | 1.16689e+06 | 2.54891 | 10000 | 3.13432 | 383min (for 9991 Steps) |
|
Simulated Annealing | 9993 | 454 | 27 | 1.30261e+06 | 1.20913e+06 | 5.92322 | 602 | 3.59493 | 76min (for 9993 Steps) |
Simulated Annealing Random | 915 | 459 | 0 | 1.3469e+06 | 1.21027e+06 | 4.44316 | 307 | 1.45809 | 24min (for 915 Steps) |
Tabu Search | 6922 | 559 | 0 | 1.23741e+06 | 1.2117e+06 | 5.03646 | 390 | 3.05839 | 43min (for 6922 Steps) |
Tabu Search Random | 60 | 35 | 0 | 1.27674e+06 | 1.21298e+06 | 2 | 22 | 1.56687 | 1min (for 60 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 9991 | 1748 | 7.74888e+06 | 1.17014e+06 | 2 | 10000 | 2.76076 | 486min (for 9991 Steps) |
|
Proximal Policy Optimization Random | 9991 | 1209 | 4.82441e+06 | 1.1663e+06 | 2 | 10000 | 5.43813 | 644min (for 9991 Steps) |
|
Simulated Annealing | 8534 | 456 | 0 | 1.41545e+06 | 1.21131e+06 | 5.39286 | 565 | 0.252189 | 91min (for 8534 Steps) |
Simulated Annealing Random | 720 | 354 | 0 | 1.58524e+06 | 1.21104e+06 | 0 | 242 | 1.85308 | 20min (for 720 Steps) |
Tabu Search | 2933 | 297 | 0 | 1.52894e+06 | 1.21731e+06 | 16.5698 | 168 | 0.572584 | 27min (for 2933 Steps) |
Tabu Search Random | 180 | 65 | 0 | 1.7864e+06 | 1.21133e+06 | 0 | 62 | 1.41545 | 5min (for 180 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 9991 | 1754 | 1.42909e+06 | 1.17e+06 | 5.55513 | 10000 | 2.50255 | 429min (for 9991 Steps) |
|
Proximal Policy Optimization Random | 9991 | 1677 | 1.46688e+06 | 1.17e+06 | 2.97665 | 10000 | 2.94587 | 471min (for 9991 Steps) |
|
Simulated Annealing | 10006 | 696 | 9 | 1.37587e+06 | 1.21377e+06 | 2 | 642 | 0.275636 | 71min (for 10006 Steps) |
Simulated Annealing Random | 759 | 429 | 0 | 1.39163e+06 | 1.21732e+06 | 2 | 255 | 1.0461 | 18min (for 759 Steps) |
Tabu Search | 2496 | 146 | 0 | 1.36132e+06 | 1.21358e+06 | 2.63385 | 133 | 0.264846 | 16min (for 2496 Steps) |
Tabu Search Random | 129 | 50 | 0 | 1.38085e+06 | 1.21129e+06 | 43.3714 | 45 | 1.22801 | 3min (for 129 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
BP17 (Acronym in the paper) - It is an updated iteration of the BPI-2012 log, but extracted in 2017. Access Link: BPI 2017
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference | 68,00 | 34,00 | 22,00 |
Reference Random | 46,00 | 31,00 | 9,00 |
Reference Optimos | 59,00 | 35,00 | 21,00 |
SA | 34,00 | 26,00 | 25,00 |
Tabu Search | 39,00 | 36,00 | 2,00 |
PPO | 40,00 | 32,00 | 16,00 |
Tabu Random | 19,00 | 11,00 | 4,00 |
SA Random | 19,00 | 21,00 | 7,00 |
PPO Random | 33,00 | 32,00 | 12,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 1,00 | 0,96 | 1,00 |
Reference Optimos | 1,00 | 1,00 | 1,00 |
SA | 0,81 | 0,93 | 1,00 |
Tabu Search | 0,95 | 0,98 | 1,00 |
PPO | 1,00 | 0,99 | 1,00 |
Tabu Random | 0,85 | 0,86 | 1,00 |
SA Random | 0,86 | 0,91 | 1,00 |
PPO Random | 1,00 | 0,95 | 1,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 79,08 | 21.159,01 | 7.660,72 |
Reference Optimos | 4.916,98 | 442,87 | 1.114,51 |
SA | 13.998,34 | 3.563,03 | 764,08 |
Tabu Search | 959,61 | 7.012,05 | 21.714,03 |
PPO | 5.836,54 | 2.629,91 | 118.980,27 |
Tabu Random | 10.561,28 | 4.241,19 | 14.593,91 |
SA Random | 2.472,96 | 20.629,72 | 7.716,23 |
PPO Random | 152,81 | 8.273,79 | 24.916,06 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 1,07 | 1,33 | 1,43 |
Reference Optimos | 1,36 | 1,27 | 0,95 |
SA | 1,30 | 1,03 | 1,06 |
Tabu Search | 0,89 | 1,12 | 1,00 |
PPO | 1,34 | 1,29 | 0,96 |
Tabu Random | 1,16 | 1,22 | 0,80 |
SA Random | 1,38 | 1,09 | 1,36 |
PPO Random | 1,03 | 1,07 | 1,01 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,31 | 0,26 | 0,18 |
Reference Optimos | 0,69 | 0,74 | 0,82 |
SA | 0,29 | 0,21 | 0,68 |
Tabu Search | 0,34 | 0,26 | 0,00 |
PPO | 0,10 | 0,26 | 0,14 |
Tabu Random | 0,01 | 0,00 | 0,00 |
SA Random | 0,06 | 0,00 | 0,14 |
PPO Random | 0,26 | 0,26 | 0,05 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 852.467,43 | 852.710,18 | 852.702,68 |
Reference | 839.940,98 | 990.747,76 | 991.046,77 |
Reference Random | 846.410,93 | 966.070,75 | 996.937,34 |
Reference Optimos | 842.130,74 | 988.114,18 | 985.012,14 |
SA | 941.847,55 | 951.636,32 | 964.062,54 |
Tabu Search | 861.506,82 | 920.061,23 | 4.712.685,16 |
PPO | 852.272,83 | 1.060.722,98 | 17.301.316,04 |
Tabu Random | 894.732,99 | 1.100.928,34 | 914.196,55 |
SA Random | 868.914,85 | 1.143.350,67 | 1.044.067,34 |
PPO Random | 844.653,56 | 926.197,95 | 15.219.855,60 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 852.467,43 | 852.710,18 | 852.702,68 |
Reference | 696.456,31 | 840.352,05 | 837.243,10 |
Reference Random | 773.072,94 | 838.151,30 | 837.243,10 |
Reference Optimos | 622.341,70 | 840.352,05 | 838.174,03 |
SA | 847.721,61 | 846.218,83 | 845.162,58 |
Tabu Search | 696.456,31 | 846.408,80 | 852.516,38 |
PPO | 622.341,70 | 825.269,43 | 838.174,03 |
Tabu Random | 851.317,68 | 852.455,13 | 849.882,17 |
SA Random | 850.046,38 | 848.571,22 | 851.497,36 |
PPO Random | 773.072,94 | 833.972,70 | 837.243,10 |
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 9991 | 2296 | 851855 | 622342 | 2 | 10000 | 4.0034 | 641min (for 9991 Steps) |
|
Proximal Policy Optimization Random | 9991 | 3480 | 846913 | 773073 | 9.13759 | 10000 | 4.41904 | 579min (for 9991 Steps) |
|
Simulated Annealing | 9998 | 1495 | 564 | 941853 | 847722 | 2 | 655 | 0.717846 | 90min (for 9998 Steps) |
Simulated Annealing Random | 1190 | 641 | 0 | 869780 | 850046 | 2.01457 | 398 | 2.4041 | 44min (for 1190 Steps) |
Tabu Search | 10000 | 2778 | 829 | 878877 | 696456 | 5.55401 | 548 | 1.09289 | 103min (for 10000 Steps) |
Tabu Search Random | 620 | 285 | 0 | 899299 | 851318 | 2.19473 | 208 | 2.49187 | 25min (for 620 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 6299 | 734 | 1.9778e+07 | 838174 | 2 | 6309 | 2.62878 | 367min (for 6299 Steps) |
|
Proximal Policy Optimization Random | 5489 | 649 | 1.71763e+07 | 837243 | 2 | 5499 | 3.2475 | 343min (for 5489 Steps) |
|
Simulated Annealing | 9994 | 2069 | 211 | 974249 | 845163 | 2 | 698 | 1.04918 | 135min (for 9994 Steps) |
Simulated Annealing Random | 896 | 494 | 0 | 1.04407e+06 | 851497 | 2 | 300 | 2.024 | 32min (for 896 Steps) |
Tabu Search | 23 | 5 | 1 | 853221 | 852804 | 0 | 4 | 0.012678 | 0min (for 23 Steps) |
Tabu Search Random | 26 | 13 | 0 | 884157 | 852467 | 0 | 10 | 1.5919 | 1min (for 26 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 9991 | 1505 | 1.02846e+06 | 825269 | 2 | 10000 | 3.34574 | 518min (for 9991 Steps) |
|
Proximal Policy Optimization Random | 9095 | 1668 | 933243 | 838151 | 2 | 9105 | 3.33356 | 493min (for 9095 Steps) |
|
Simulated Annealing | 10000 | 835 | 115 | 955819 | 846219 | 0 | 684 | 0.568655 | 106min (for 10000 Steps) |
Simulated Annealing Random | 947 | 511 | 0 | 1.11572e+06 | 850648 | 2 | 317 | 2.13876 | 34min (for 947 Steps) |
Tabu Search | 10007 | 1426 | 563 | 924136 | 846409 | 2.88612 | 599 | 0.756378 | 105min (for 10007 Steps) |
Tabu Search Random | 173 | 85 | 0 | 1.12352e+06 | 852813 | 2.0259 | 59 | 0.090271 | 6min (for 173 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
BP19 (Acronym in the paper) - It comes from a Netherlands multinational coatings and paints company, describing the purchase order handling process for its 60 subsidiaries. Access Link: BPI Challenge 2019
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference | 22,00 | 23,00 | 12,00 |
Reference Random | 19,00 | 16,00 | 12,00 |
Reference Optimos | 15,00 | 23,00 | 9,00 |
SA | 6,00 | 7,00 | 12,00 |
Tabu Search | 2,00 | 8,00 | 20,00 |
PPO | 19,00 | 23,00 | 3,00 |
Tabu Random | 1,00 | 1,00 | 5,00 |
SA Random | 8,00 | 9,00 | 2,00 |
PPO Random | 21,00 | 19,00 | 11,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 1,00 | 1,00 | 1,00 |
Reference Optimos | 1,00 | 1,00 | 1,00 |
SA | 0,98 | 0,96 | 1,00 |
Tabu Search | 0,99 | 0,97 | 1,00 |
PPO | 1,00 | 1,00 | 1,00 |
Tabu Random | 0,99 | 0,96 | 1,00 |
SA Random | 0,99 | 0,99 | 1,00 |
PPO Random | 1,00 | 1,00 | 1,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 436,47 | 430.414,11 | 10.221,63 |
Reference Optimos | 6.464,99 | 0,00 | 1.914.144,46 |
SA | 30.437,76 | 19.742,85 | 1.916.109,07 |
Tabu Search | 36.522,19 | 24.172,94 | 1.913.213,38 |
PPO | 7.252,59 | 0,00 | 1.912.100,68 |
Tabu Random | 36.850,45 | 22.667,19 | 1.913.565,79 |
SA Random | 20.186,07 | 545.936,82 | 1.916.106,86 |
PPO Random | 7.483,51 | 405.545,77 | 10.221,63 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,78 | 1,11 | 1,62 |
Reference Optimos | 1,18 | 1,03 | 1,00 |
SA | 0,96 | 0,96 | 1,00 |
Tabu Search | 0,96 | 0,98 | 1,00 |
PPO | 1,07 | 1,03 | 1,00 |
Tabu Random | 0,00 | 0,00 | 1,00 |
SA Random | 1,08 | 1,33 | 1,00 |
PPO Random | 0,90 | 1,12 | 1,62 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,86 | 0,00 | 0,67 |
Reference Optimos | 0,14 | 1,00 | 0,33 |
SA | 0,00 | 0,00 | 0,17 |
Tabu Search | 0,05 | 0,00 | 0,08 |
PPO | 0,09 | 1,00 | 0,33 |
Tabu Random | 0,05 | 0,00 | 0,17 |
SA Random | 0,14 | 0,00 | 0,08 |
PPO Random | 0,68 | 0,00 | 0,67 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 1.043.060,17 | 1.000.680,00 | 991.869,54 |
Reference | 13.254.654,93 | 8.620.197,31 | 657.315.714,08 |
Reference Random | 13.562.132,10 | 195.531.623,76 | 653.567.931,48 |
Reference Optimos | 14.429.898,92 | 8.620.197,31 | 7.864.354,84 |
SA | 1.507.097,88 | 1.956.373,35 | 1.413.361,82 |
Tabu Search | 1.589.905,74 | 4.418.830,87 | 2.659.125,33 |
PPO | 11.638.988,73 | 8.620.197,31 | 15.876.716,15 |
Tabu Random | 1.746.895,25 | 2.076.818,41 | 1.044.893,23 |
SA Random | 2.499.499,15 | 199.021.926,37 | 4.707.934,03 |
PPO Random | 12.219.507,07 | 179.178.011,59 | 653.567.931,48 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 1.043.060,17 | 1.000.680,00 | 991.869,54 |
Reference | 1.067.163,66 | 3.005.361,94 | 925.020,00 |
Reference Random | 1.067.163,66 | 2.048.507,77 | 925.020,00 |
Reference Optimos | 1.371.193,29 | 3.005.361,94 | 1.000.620,00 |
SA | 1.063.109,41 | 1.544.374,98 | 925.020,00 |
Tabu Search | 1.371.193,29 | 3.042.646,84 | 925.020,00 |
PPO | 1.082.014,13 | 3.005.361,94 | 925.020,00 |
Tabu Random | 1.746.895,25 | 2.076.818,41 | 925.020,00 |
SA Random | 1.067.163,66 | 2.048.507,77 | 925.020,00 |
PPO Random | 1.690.399,18 | 2.151.928,20 | 925.020,00 |
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 2009 | 2 | 1.1639e+07 | 1.08201e+06 | 4.03617 | 2019 | 15.139 | 501min (for 2009 Steps) |
|
Proximal Policy Optimization Random | 4067 | 2 | 1.22195e+07 | 1.6904e+06 | 6.67055 | 4077 | 20.129 | 1,043min (for 4067 Steps) |
|
Simulated Annealing | 9999 | 202 | 938 | 1.5071e+06 | 1.06311e+06 | 2.78258 | 591 | 0.95725 | 419min (for 9999 Steps) |
Simulated Annealing Random | 2633 | 1077 | 20 | 2.4995e+06 | 1.06716e+06 | 3.92252 | 868 | 1.46477 | 454min (for 2633 Steps) |
Tabu Search | 3537 | 38 | 1255 | 1.58991e+06 | 1.37119e+06 | 3.50991 | 176 | 2.03933 | 137min (for 3537 Steps) |
Tabu Search Random | 473 | 153 | 0 | 1.7469e+06 | 1.7469e+06 | 5.83961 | 155 | 2.20628 | 62min (for 473 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 631 | 8 | 2.08606e+07 | 5.14389e+06 | 9.35763 | 640 | 111.327 | 773min (for 631 Steps) |
|
Proximal Policy Optimization Random | 771 | 2 | 1.97393e+09 | 3.22863e+06 | 9.58205 | 780 | 127.342 | 1,760min (for 771 Steps) |
|
Simulated Annealing | 9270 | 193 | 1695 | 2.19567e+06 | 1.00062e+06 | 3.10955 | 502 | 0.382867 | 358min (for 9270 Steps) |
Simulated Annealing Random | 705 | 297 | 0 | 6.59939e+06 | 3.35898e+06 | 5 | 254 | 6.81138 | 314min (for 705 Steps) |
Tabu Search | 7986 | 161 | 1055 | 3.98648e+06 | 1.42871e+06 | 3.54196 | 425 | 1.25507 | 333min (for 7986 Steps) |
Tabu Search Random | 128 | 34 | 0 | 2.48004e+06 | 1.00068e+06 | 3.72706 | 40 | 9.28795 | 25min (for 128 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 241 | 1 | 2.89777e+08 | 3.21102e+06 | 8.79699 | 250 | 44.0296 | 196min (for 241 Steps) |
|
Proximal Policy Optimization Random | 2541 | 1 | 1.79178e+08 | 2.15193e+06 | 5.65822 | 2550 | 20.6542 | 1,436min (for 2541 Steps) |
|
Simulated Annealing | 10001 | 200 | 2726 | 1.95637e+06 | 1.54438e+06 | 2.70882 | 593 | 0.388852 | 401min (for 10001 Steps) |
Simulated Annealing Random | 1049 | 423 | 0 | 1.77198e+08 | 2.04851e+06 | 4.1509 | 347 | 5.50982 | 225min (for 1049 Steps) |
Tabu Search | 6357 | 96 | 280 | 4.26219e+06 | 3.04265e+06 | 3.03069 | 346 | 1.85831 | 262min (for 6357 Steps) |
Tabu Search Random | 29 | 5 | 0 | 2.07682e+06 | 2.07682e+06 | 2.96169 | 7 | 7.34266 | 2min (for 29 Steps) |
Individual Pareto images:
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
CALL (Acronym in the paper) - It comes from a call center process. This event log includes a high volume of cases with short duration (on average, two activities per case).
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference | 15,00 | 14,00 | 13,00 |
Reference Random | 9,00 | 17,00 | 17,00 |
Reference Optimos | 15,00 | 5,00 | 9,00 |
SA | 7,00 | 4,00 | 5,00 |
Tabu Search | 1,00 | 4,00 | 1,00 |
PPO | 17,00 | 5,00 | 9,00 |
Tabu Random | 9,00 | 2,00 | 3,00 |
SA Random | 11,00 | 9,00 | 15,00 |
PPO Random | 9,00 | 12,00 | 8,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 1,00 | 1,00 | 1,00 |
Reference Optimos | 1,00 | 1,00 | 1,00 |
SA | 0,98 | 0,91 | 1,00 |
Tabu Search | 0,98 | 0,91 | 1,00 |
PPO | 1,00 | 1,00 | 1,00 |
Tabu Random | 0,99 | 0,84 | 1,00 |
SA Random | 1,00 | 1,00 | 1,00 |
PPO Random | 1,00 | 1,00 | 1,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 20.522,85 | 1.199,31 | 17.646,90 |
Reference Optimos | 0,00 | 26.800,08 | 3.270,60 |
SA | 33.019,80 | 271.567,49 | 517.182,71 |
Tabu Search | 29.609,43 | 216.393,82 | 581.762,66 |
PPO | 0,00 | 26.800,08 | 3.270,60 |
Tabu Random | 24.933,62 | 409.015,90 | 891.974,32 |
SA Random | 54.507,65 | 2.173,16 | 18.693,25 |
PPO Random | 20.522,85 | 17.516,95 | 13.509,85 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,99 | 1,21 | 1,23 |
Reference Optimos | 1,74 | 1,00 | 1,60 |
SA | 0,93 | 0,95 | 0,00 |
Tabu Search | 0,00 | 0,94 | 0,00 |
PPO | 1,74 | 1,00 | 1,60 |
Tabu Random | 1,02 | 0,97 | 0,92 |
SA Random | 1,29 | 1,01 | 1,19 |
PPO Random | 0,99 | 0,97 | 1,01 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,00 | 0,64 | 0,62 |
Reference Optimos | 1,00 | 0,36 | 0,38 |
SA | 0,00 | 0,00 | 0,00 |
Tabu Search | 0,00 | 0,00 | 0,00 |
PPO | 1,00 | 0,36 | 0,38 |
Tabu Random | 0,00 | 0,00 | 0,00 |
SA Random | 0,00 | 0,21 | 0,62 |
PPO Random | 0,00 | 0,43 | 0,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 11.106.584,79 | 10.889.027,63 | 11.738.570,26 |
Reference | 71.718,79 | 114.388,32 | 83.654,70 |
Reference Random | 14.570,07 | 108.691,65 | 143.569,65 |
Reference Optimos | 71.718,79 | 6.096,85 | 49.050,92 |
SA | 1.738.604,64 | 7.956.488,84 | 9.698.842,92 |
Tabu Search | 1.527.949,36 | 9.167.885,21 | 10.225.921,16 |
PPO | 71.718,79 | 6.096,85 | 49.050,92 |
Tabu Random | 1.146.321,93 | 9.011.205,66 | 19.606.665,88 |
SA Random | 15.340.975,24 | 191.474,45 | 172.392,03 |
PPO Random | 14.570,07 | 79.599,66 | 15.676,56 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 11.106.584,79 | 10.889.027,63 | 11.738.570,26 |
Reference | 1.881,05 | 5.758,89 | 4.876,96 |
Reference Random | 1.902,42 | 4.281,56 | 4.876,96 |
Reference Optimos | 1.881,05 | 5.758,89 | 4.417,33 |
SA | 1.387.596,57 | 7.093.163,15 | 9.698.842,92 |
Tabu Search | 1.527.949,36 | 8.719.642,93 | 10.225.921,16 |
PPO | 1.881,05 | 5.758,89 | 4.417,33 |
Tabu Random | 1.066.232,87 | 8.773.247,05 | 10.438.156,55 |
SA Random | 191.679,36 | 4.281,56 | 4.876,96 |
PPO Random | 1.902,42 | 34.311,62 | 4.562,45 |
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 6600 | 405 | 73793.5 | 1881.05 | 25.3167 | 6610 | 3.35217 | 361min (for 6600 Steps) |
|
Proximal Policy Optimization Random | 5241 | 326 | 12413.4 | 1951.83 | 4.70833 | 5250 | 9.54398 | 717min (for 5241 Steps) |
|
Simulated Annealing | 10002 | 360 | 1088 | 1.7386e+06 | 1.3876e+06 | 2.54301 | 664 | 0.907438 | 82min (for 10002 Steps) |
Simulated Annealing Random | 2600 | 1314 | 542 | 1.5341e+07 | 191679 | 3.18854 | 868 | 2.347 | 104min (for 2600 Steps) |
Tabu Search | 305 | 4 | 0 | 1.52795e+06 | 1.52795e+06 | 2.27386 | 21 | 1.54933 | 2min (for 305 Steps) |
Tabu Search Random | 2600 | 1536 | 356 | 1.19836e+06 | 1.06623e+06 | 2.60242 | 868 | 1.45499 | 88min (for 2600 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 3511 | 349 | 45649.9 | 4417.33 | 26.3333 | 3520 | 17.117 | 716min (for 3511 Steps) |
|
Proximal Policy Optimization Random | 4347 | 590 | 15676.6 | 4562.45 | 26.1556 | 4357 | 14.0817 | 601min (for 4347 Steps) |
|
Simulated Annealing | 7152 | 311 | 0 | 1.02421e+07 | 9.80554e+06 | 5.39037 | 468 | 0.367432 | 45min (for 7152 Steps) |
Simulated Annealing Random | 2600 | 1339 | 655 | 172392 | 4876.96 | 7.15138 | 868 | 3.11103 | 107min (for 2600 Steps) |
Tabu Search | 103 | 4 | 0 | 1.02259e+07 | 1.02259e+07 | 3.53407 | 9 | 2.63266 | 0min (for 103 Steps) |
Tabu Search Random | 47 | 16 | 0 | 1.98113e+07 | 1.10522e+07 | 3.45809 | 18 | 2.05723 | 1min (for 47 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 2106 | 84 | 6096.85 | 5758.89 | 2.72419 | 2116 | 3.47716 | 140min (for 2106 Steps) |
|
Proximal Policy Optimization Random | 8994 | 494 | 80850.5 | 34311.6 | 8.81466 | 9004 | 4.83608 | 699min (for 8994 Steps) |
|
Simulated Annealing | 10011 | 389 | 52 | 7.95649e+06 | 7.09316e+06 | 2.88614 | 668 | 0.000984311 | 78min (for 10011 Steps) |
Simulated Annealing Random | 2600 | 1290 | 671 | 191474 | 4281.56 | 10.7397 | 868 | 2.08443 | 98min (for 2600 Steps) |
Tabu Search | 3393 | 129 | 323 | 9.4731e+06 | 8.71964e+06 | 3.07424 | 221 | 0.338917 | 31min (for 3393 Steps) |
Tabu Search Random | 35 | 11 | 0 | 9.01121e+06 | 8.77325e+06 | 2.24764 | 14 | 1.19283 | 1min (for 35 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
ACC (Acronym in the paper) - This business process, also known as academic credentials, is an anonymized log of an academic recognition process at a university. In this process, a worker performs one task at a time, but occasionally, a worker may take on a second or a third activity instance concurrently. This event log contains many resources with low participation in the process, meaning each resource performs only a handful of activity instances across the entire period covered by the event log.
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference | 77,00 | 32,00 | 24,00 |
Reference Random | 50,00 | 25,00 | 21,00 |
Reference Optimos | 77,00 | 30,00 | 28,00 |
SA | 26,00 | 19,00 | 6,00 |
Tabu Search | 42,00 | 21,00 | 13,00 |
PPO | 50,00 | 28,00 | 30,00 |
Tabu Random | 29,00 | 10,00 | 9,00 |
SA Random | 34,00 | 21,00 | 10,00 |
PPO Random | 34,00 | 15,00 | 16,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,98 | 0,99 | 1,00 |
Reference Optimos | 1,00 | 0,96 | 0,99 |
SA | 0,73 | 0,70 | 0,97 |
Tabu Search | 0,87 | 0,96 | 0,98 |
PPO | 0,99 | 0,82 | 0,99 |
Tabu Random | 0,88 | 0,63 | 0,97 |
SA Random | 0,81 | 0,98 | 1,00 |
PPO Random | 0,97 | 0,61 | 0,98 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 2.833,58 | 1.319,03 | 18.702,87 |
Reference Optimos | 3,08 | 90.263,12 | 35.620,70 |
SA | 7.078,89 | 90.612,63 | 78.466,39 |
Tabu Search | 11.310,39 | 90.300,65 | 62.127,93 |
PPO | 981,75 | 92.517,95 | 36.111,28 |
Tabu Random | 4.486,89 | 91.019,64 | 56.746,92 |
SA Random | 38.498,23 | 1.372,92 | 19.515,43 |
PPO Random | 3.219,77 | 93.659,12 | 69.173,02 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 1,12 | 1,72 | 1,60 |
Reference Optimos | 1,20 | 1,01 | 1,09 |
SA | 1,05 | 1,02 | 1,01 |
Tabu Search | 0,95 | 1,01 | 1,03 |
PPO | 1,11 | 1,01 | 1,06 |
Tabu Random | 0,98 | 1,02 | 1,00 |
SA Random | 1,38 | 1,63 | 1,49 |
PPO Random | 1,01 | 1,00 | 0,99 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,01 | 0,16 | 0,25 |
Reference Optimos | 0,99 | 0,84 | 0,75 |
SA | 0,06 | 0,19 | 0,00 |
Tabu Search | 0,58 | 0,66 | 0,42 |
PPO | 0,36 | 0,00 | 0,33 |
Tabu Random | 0,01 | 0,03 | 0,00 |
SA Random | 0,01 | 0,12 | 0,21 |
PPO Random | 0,00 | 0,00 | 0,04 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 10.924.190,73 | 11.498.316,15 | 11.845.078,32 |
Reference | 11.505.477,29 | 11.360.135,58 | 12.438.262,75 |
Reference Random | 11.595.106,20 | 11.443.018,69 | 11.625.892,84 |
Reference Optimos | 11.510.016,25 | 11.401.558,01 | 12.432.425,07 |
SA | 11.523.864,35 | 11.760.911,87 | 11.371.253,37 |
Tabu Search | 11.397.259,22 | 11.343.615,08 | 14.404.102,38 |
PPO | 11.573.728,00 | 11.892.906,21 | 12.519.200,95 |
Tabu Random | 11.899.980,67 | 11.533.807,71 | 11.899.414,42 |
SA Random | 11.487.427,01 | 11.406.146,05 | 11.686.354,37 |
PPO Random | 11.582.461,74 | 11.581.298,14 | 11.884.449,70 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 10.924.190,73 | 11.498.316,15 | 11.845.078,32 |
Reference | 10.653.552,98 | 10.906.582,86 | 10.908.571,55 |
Reference Random | 10.908.046,39 | 10.867.316,03 | 10.912.591,09 |
Reference Optimos | 10.653.552,98 | 10.906.582,86 | 10.908.571,55 |
SA | 10.899.817,14 | 11.162.809,30 | 11.150.692,54 |
Tabu Search | 10.653.552,98 | 10.906.582,86 | 10.908.571,55 |
PPO | 10.559.397,46 | 11.248.319,30 | 11.182.600,34 |
Tabu Random | 10.924.190,73 | 10.917.768,17 | 11.250.920,54 |
SA Random | 10.908.046,39 | 10.917.768,17 | 11.246.504,00 |
PPO Random | 10.729.651,35 | 10.867.316,03 | 11.250.920,54 |
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 6611 | 1806 | 1.15599e+07 | 1.05594e+07 | 2.38727 | 6620 | 5.96561 | 717min (for 6611 Steps) |
|
Proximal Policy Optimization Random | 6951 | 1536 | 1.16295e+07 | 1.07297e+07 | 2.25017 | 6960 | 6.38168 | 718min (for 6951 Steps) |
|
Simulated Annealing | 10012 | 897 | 2623 | 1.15301e+07 | 1.08998e+07 | 2.65326 | 505 | 1.82837 | 112min (for 10012 Steps) |
Simulated Annealing Random | 1976 | 953 | 0 | 1.15087e+07 | 1.0908e+07 | 2.86636 | 656 | 2.43394 | 92min (for 1976 Steps) |
Tabu Search | 10009 | 3770 | 1811 | 1.14301e+07 | 1.06536e+07 | 3.1152 | 497 | 1.9764 | 135min (for 10009 Steps) |
Tabu Search Random | 611 | 292 | 0 | 1.19551e+07 | 1.10942e+07 | 2.72866 | 200 | 2.85947 | 30min (for 611 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 8191 | 1536 | 1.25242e+07 | 1.12337e+07 | 4.74331 | 8200 | 5.6872 | 718min (for 8191 Steps) |
|
Proximal Policy Optimization Random | 9831 | 595 | 1.18351e+07 | 1.08675e+07 | 3.41973 | 9840 | 3.92619 | 717min (for 9831 Steps) |
|
Simulated Annealing | 10011 | 1039 | 61 | 1.13937e+07 | 1.11507e+07 | 3.20584 | 536 | 0.0011173 | 142min (for 10011 Steps) |
Simulated Annealing Random | 1084 | 480 | 0 | 1.18439e+07 | 1.13304e+07 | 4.63462 | 357 | 2.51622 | 47min (for 1084 Steps) |
Tabu Search | 3893 | 156 | 407 | 1.53945e+07 | 1.09086e+07 | 4.27273 | 210 | 0.696202 | 47min (for 3893 Steps) |
Tabu Search Random | 83 | 26 | 0 | 1.19013e+07 | 1.12509e+07 | 2.58917 | 25 | 0.0934325 | 3min (for 83 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 8401 | 2371 | 1.18794e+07 | 1.12483e+07 | 4.20479 | 8410 | 4.76213 | 717min (for 8401 Steps) |
|
Proximal Policy Optimization Random | 8621 | 2491 | 1.15323e+07 | 1.08673e+07 | 2.2739 | 8630 | 5.6891 | 717min (for 8621 Steps) |
|
Simulated Annealing | 9993 | 1028 | 1435 | 1.17937e+07 | 1.13394e+07 | 3.71206 | 538 | 1.57184 | 121min (for 9993 Steps) |
Simulated Annealing Random | 1433 | 755 | 0 | 1.14658e+07 | 1.10758e+07 | 3.30315 | 475 | 0.267463 | 63min (for 1433 Steps) |
Tabu Search | 9994 | 1443 | 1374 | 1.14417e+07 | 1.09137e+07 | 2.24465 | 508 | 3.14961 | 115min (for 9994 Steps) |
Tabu Search Random | 95 | 29 | 0 | 1.16251e+07 | 1.12549e+07 | 3.58079 | 29 | 1.82635 | 3min (for 95 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
GOV (Acronym in the paper) corresponds to an application-to-approval process in a government agency. In this process, each worker handles multiple applications concurrently.
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference | 17,00 | 26,00 | 7,00 |
Reference Random | 9,00 | 17,00 | 5,00 |
Reference Optimos | 25,00 | 24,00 | 10,00 |
SA | 13,00 | 14,00 | 8,00 |
Tabu Search | 16,00 | 23,00 | 9,00 |
PPO | 18,00 | 9,00 | 3,00 |
Tabu Random | 4,00 | 9,00 | 6,00 |
SA Random | 6,00 | 13,00 | 5,00 |
PPO Random | 8,00 | 10,00 | 3,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,95 | 0,98 | 0,99 |
Reference Optimos | 1,00 | 1,00 | 1,00 |
SA | 0,92 | 0,98 | 1,00 |
Tabu Search | 0,94 | 1,00 | 1,00 |
PPO | 1,00 | 0,99 | 0,96 |
Tabu Random | 0,82 | 0,95 | 0,97 |
SA Random | 0,82 | 0,93 | 0,99 |
PPO Random | 0,95 | 0,98 | 0,97 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 51.182,11 | 390.275,62 | 4.786,74 |
Reference Optimos | 8.498,87 | 601,78 | 3.742,73 |
SA | 139.807,66 | 399.659,68 | 12.229,69 |
Tabu Search | 42.046,65 | 1.052,23 | 3.611,52 |
PPO | 16.998,45 | 194.094,43 | 18.849,23 |
Tabu Random | 189.850,69 | 455.733,28 | 10.109,15 |
SA Random | 175.418,86 | 478.082,00 | 4.786,74 |
PPO Random | 52.002,22 | 402.914,79 | 16.354,39 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,98 | 1,19 | 1,11 |
Reference Optimos | 1,17 | 1,03 | 0,92 |
SA | 1,28 | 1,17 | 1,12 |
Tabu Search | 0,94 | 1,02 | 0,84 |
PPO | 0,87 | 1,06 | 0,94 |
Tabu Random | 1,24 | 1,11 | 0,32 |
SA Random | 1,29 | 1,27 | 1,11 |
PPO Random | 0,95 | 1,05 | 0,88 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,35 | 0,15 | 0,71 |
Reference Optimos | 0,65 | 0,85 | 0,29 |
SA | 0,35 | 0,00 | 0,14 |
Tabu Search | 0,00 | 0,85 | 0,14 |
PPO | 0,29 | 0,00 | 0,00 |
Tabu Random | 0,00 | 0,00 | 0,00 |
SA Random | 0,06 | 0,08 | 0,71 |
PPO Random | 0,29 | 0,08 | 0,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 13.369.643,07 | 16.047.474,92 | 15.756.570,78 |
Reference | 20.382.094,57 | 13.905.885,40 | 17.864.736,16 |
Reference Random | 18.702.461,88 | 32.724.482,55 | 16.897.205,28 |
Reference Optimos | 20.768.290,18 | 13.521.404,64 | 19.964.244,16 |
SA | 19.893.274,06 | 28.990.146,10 | 19.213.421,38 |
Tabu Search | 20.151.717,82 | 13.179.858,35 | 18.573.617,82 |
PPO | 22.807.284,80 | 53.598.662,45 | 16.241.664,63 |
Tabu Random | 17.216.198,55 | 29.225.441,19 | 18.454.174,16 |
SA Random | 17.674.868,00 | 22.470.807,00 | 16.897.205,28 |
PPO Random | 19.708.624,27 | 53.107.122,04 | 19.719.892,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 13.369.643,07 | 16.047.474,92 | 15.756.570,78 |
Reference | 15.788.366,74 | 10.521.791,54 | 14.582.036,26 |
Reference Random | 14.811.805,42 | 14.796.008,26 | 14.582.036,26 |
Reference Optimos | 15.788.366,74 | 10.521.791,54 | 14.914.682,03 |
SA | 15.788.366,74 | 13.734.908,48 | 13.402.862,80 |
Tabu Search | 16.655.749,35 | 10.521.791,54 | 14.914.682,03 |
PPO | 13.369.643,07 | 16.357.230,91 | 15.756.570,78 |
Tabu Random | 14.480.629,67 | 16.723.485,01 | 17.763.490,08 |
SA Random | 14.811.805,42 | 15.523.152,37 | 14.582.036,26 |
PPO Random | 16.639.415,98 | 14.796.008,26 | 15.756.570,78 |
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 2951 | 1513 | 2.29747e+07 | 1.65511e+07 | 3.71509 | 2960 | 27.4838 | 1,431min (for 2951 Steps) |
|
Proximal Policy Optimization Random | 40 | 1292 | 1.97086e+07 | 1.66394e+07 | 3.69476 | 2141 | 6664.29 | 1,016min (for 40 Steps) |
|
Simulated Annealing | 9996 | 380 | 5397 | 1.98933e+07 | 1.57884e+07 | 2.13291 | 436 | 1.81164 | 513min (for 9996 Steps) |
Simulated Annealing Random | 680 | 283 | 0 | 1.77299e+07 | 1.48118e+07 | 2.02718 | 224 | 16.4456 | 178min (for 680 Steps) |
Tabu Search | 2105 | 279 | 0 | 1.96246e+07 | 1.66557e+07 | 2.11111 | 107 | 1.12742 | 89min (for 2105 Steps) |
Tabu Search Random | 35 | 9 | 0 | 1.63184e+07 | 1.44806e+07 | 2.11628 | 9 | 13.3734 | 4min (for 35 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 995 | 1002 | 1.70208e+07 | 1.58872e+07 | 2.4 | 1005 | 8.21465 | 73min (for 995 Steps) |
|
Proximal Policy Optimization Random | 1114 | 955 | 2.02035e+07 | 1.72073e+07 | 2.05263 | 1124 | 8.24061 | 141min (for 1114 Steps) |
|
Simulated Annealing | 81 | 2 | 57 | 2.2491e+07 | 1.57653e+07 | 2.10574 | 4 | 0.001033 | 5min (for 81 Steps) |
Simulated Annealing Random | 648 | 260 | 0 | 1.68972e+07 | 1.4582e+07 | 2.10256 | 208 | 12.569 | 198min (for 648 Steps) |
Tabu Search | 978 | 21 | 0 | 1.8935e+07 | 1.49147e+07 | 2.12903 | 47 | 0.361706 | 167min (for 978 Steps) |
Tabu Search Random | 44 | 10 | 0 | 1.86589e+07 | 1.57566e+07 | 2.09605 | 12 | 12.8511 | 12min (for 44 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 1731 | 311 | 5.06741e+07 | 1.63572e+07 | 4.92711 | 1740 | 57.1054 | 1,424min (for 1731 Steps) |
|
Proximal Policy Optimization Random | 31 | 2 | 2.06983e+07 | 1.87449e+07 | 2.46479 | 40 | 28.9958 | 14min (for 31 Steps) |
|
Simulated Annealing | 9996 | 261 | 5965 | 2.84575e+07 | 1.37349e+07 | 4.65205 | 436 | 1.25878 | 736min (for 9996 Steps) |
Simulated Annealing Random | 760 | 329 | 0 | 2.25602e+07 | 1.55232e+07 | 2.03125 | 245 | 13.5362 | 220min (for 760 Steps) |
Tabu Search | 5119 | 251 | 0 | 1.33973e+07 | 1.05218e+07 | 2.53326 | 263 | 5.93512 | 297min (for 5119 Steps) |
Tabu Search Random | 125 | 35 | 0 | 3.18784e+07 | 1.67235e+07 | 2.0061 | 39 | 10.9127 | 35min (for 125 Steps) |
Individual Pareto images:
INS (Acronym in the paper) - It originates from an insurance claims process, holding a high number of traces.
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference | 102,00 | 35,00 | 9,00 |
Reference Random | 49,00 | 18,00 | 11,00 |
Reference Optimos | 83,00 | 35,00 | 9,00 |
SA | 35,00 | 15,00 | 9,00 |
Tabu Search | 66,00 | 24,00 | 9,00 |
PPO | 34,00 | 19,00 | 6,00 |
Tabu Random | 20,00 | 10,00 | 2,00 |
SA Random | 42,00 | 15,00 | 4,00 |
PPO Random | 23,00 | 15,00 | 13,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 1,00 | 0,96 | 1,00 |
Reference Optimos | 0,86 | 1,00 | 1,00 |
SA | 0,63 | 0,67 | 1,00 |
Tabu Search | 0,86 | 0,65 | 1,00 |
PPO | 0,84 | 0,99 | 1,00 |
Tabu Random | 0,76 | 0,72 | 1,00 |
SA Random | 1,00 | 0,96 | 1,00 |
PPO Random | 0,73 | 0,83 | 1,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 820,72 | 2.021,48 | 405,81 |
Reference Optimos | 20.828,96 | 300,91 | 0,00 |
SA | 25.189,49 | 8.911,26 | 239,13 |
Tabu Search | 20.873,41 | 9.904,22 | 514,92 |
PPO | 22.266,42 | 1.265,45 | 6.938,30 |
Tabu Random | 23.137,72 | 5.116,44 | 694,27 |
SA Random | 1.089,10 | 2.175,18 | 731,99 |
PPO Random | 22.317,59 | 2.574,28 | 360,41 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 1,20 | 1,12 | 0,90 |
Reference Optimos | 0,97 | 0,97 | 1,08 |
SA | 0,98 | 1,00 | 1,21 |
Tabu Search | 0,97 | 1,01 | 0,86 |
PPO | 0,99 | 0,79 | 1,24 |
Tabu Random | 0,96 | 0,96 | 0,69 |
SA Random | 1,13 | 1,23 | 0,73 |
PPO Random | 0,98 | 0,71 | 0,81 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,19 | 0,11 | 0,00 |
Reference Optimos | 0,81 | 0,89 | 1,00 |
SA | 0,17 | 0,26 | 0,22 |
Tabu Search | 0,64 | 0,34 | 0,67 |
PPO | 0,01 | 0,34 | 0,22 |
Tabu Random | 0,01 | 0,03 | 0,11 |
SA Random | 0,17 | 0,11 | 0,11 |
PPO Random | 0,01 | 0,03 | 0,11 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 21.523.074,51 | 21.367.016,55 | 21.992.001,65 |
Reference | 22.163.701,21 | 22.480.273,77 | 21.980.061,32 |
Reference Random | 22.520.861,70 | 22.715.030,13 | 22.230.347,40 |
Reference Optimos | 21.940.447,08 | 22.319.156,40 | 21.980.061,32 |
SA | 21.997.410,60 | 21.882.992,74 | 21.868.122,18 |
Tabu Search | 21.931.262,97 | 22.084.117,64 | 22.034.900,76 |
PPO | 21.866.011,73 | 22.512.018,90 | 22.017.415,53 |
Tabu Random | 21.910.472,47 | 22.448.677,25 | 21.575.390,94 |
SA Random | 22.575.855,21 | 22.727.193,86 | 21.591.259,18 |
PPO Random | 21.976.390,66 | 22.504.743,76 | 22.192.879,69 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 21.523.074,51 | 21.367.016,55 | 21.992.001,65 |
Reference | 21.072.069,32 | 21.367.016,55 | 21.506.333,06 |
Reference Random | 21.265.421,23 | 21.209.398,29 | 21.840.288,41 |
Reference Optimos | 21.072.069,32 | 21.449.581,76 | 21.506.333,06 |
SA | 20.944.858,00 | 21.367.016,55 | 21.221.099,75 |
Tabu Search | 21.072.069,32 | 21.288.200,25 | 21.776.404,35 |
PPO | 20.709.108,80 | 21.250.656,59 | 21.517.242,02 |
Tabu Random | 21.285.666,80 | 21.367.016,55 | 21.370.047,01 |
SA Random | 21.265.421,23 | 21.282.481,73 | 21.370.047,01 |
PPO Random | 21.114.791,87 | 21.209.398,29 | 21.780.734,88 |
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 7031 | 2074 | 2.18687e+07 | 2.07091e+07 | 2.2981 | 7040 | 5.88667 | 718min (for 7031 Steps) |
|
Proximal Policy Optimization Random | 6371 | 576 | 2.18484e+07 | 2.11148e+07 | 2.0819 | 6380 | 7.42354 | 718min (for 6371 Steps) |
|
Simulated Annealing | 9996 | 331 | 531 | 2.20013e+07 | 2.09449e+07 | 2 | 675 | 1.37837 | 147min (for 9996 Steps) |
Simulated Annealing Random | 1592 | 609 | 0 | 2.26663e+07 | 2.12654e+07 | 5.37885 | 532 | 2.87519 | 99min (for 1592 Steps) |
Tabu Search | 9992 | 261 | 539 | 2.19604e+07 | 2.10721e+07 | 2 | 582 | 25.6315 | 159min (for 9992 Steps) |
Tabu Search Random | 266 | 96 | 0 | 2.20979e+07 | 2.15495e+07 | 2 | 90 | 2.74988 | 16min (for 266 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 3259 | 388 | 2.23003e+07 | 2.15172e+07 | 2 | 3269 | 6.66236 | 287min (for 3259 Steps) |
|
Proximal Policy Optimization Random | 7361 | 650 | 2.22657e+07 | 2.18403e+07 | 2 | 7370 | 6.16649 | 718min (for 7361 Steps) |
|
Simulated Annealing | 10008 | 385 | 33 | 2.1984e+07 | 2.12211e+07 | 2 | 693 | 0.0935161 | 162min (for 10008 Steps) |
Simulated Annealing Random | 704 | 355 | 0 | 2.21125e+07 | 2.1791e+07 | 2.99432 | 236 | 3.75098 | 44min (for 704 Steps) |
Tabu Search | 3862 | 117 | 1117 | 2.21161e+07 | 2.17764e+07 | 2 | 257 | 0.96359 | 60min (for 3862 Steps) |
Tabu Search Random | 8 | 2 | 0 | 2.2355e+07 | 2.20561e+07 | 0 | 4 | 3.28029 | 0min (for 8 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 5891 | 213 | 2.25286e+07 | 2.12507e+07 | 2.27108 | 5900 | 5.97208 | 718min (for 5891 Steps) |
|
Proximal Policy Optimization Random | 2741 | 81 | 2.24371e+07 | 2.12094e+07 | 2.11444 | 2750 | 18.2748 | 716min (for 2741 Steps) |
|
Simulated Annealing | 10006 | 372 | 135 | 2.19224e+07 | 2.14326e+07 | 2 | 691 | 0.402094 | 145min (for 10006 Steps) |
Simulated Annealing Random | 821 | 389 | 0 | 2.30258e+07 | 2.19076e+07 | 2.95062 | 274 | 3.65792 | 51min (for 821 Steps) |
Tabu Search | 7908 | 250 | 973 | 2.21005e+07 | 2.12882e+07 | 2 | 521 | 2.20827 | 125min (for 7908 Steps) |
Tabu Search Random | 173 | 56 | 0 | 2.2328e+07 | 2.15111e+07 | 2 | 59 | 0.200568 | 10min (for 173 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
PRD (Acronym in the paper) corresponds to a manufacturing process extracted by an Enterprise Resource Planning (ERP) system, where tasks are individual steps or ‘‘stations’’ in the manufacturing workflow. Access Link
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference | 80,00 | 44,00 | 13,00 |
Reference Random | 76,00 | 41,00 | 12,00 |
Reference Optimos | 69,00 | 44,00 | 16,00 |
SA | 37,00 | 30,00 | 12,00 |
Tabu Search | 47,00 | 44,00 | 18,00 |
PPO | 50,00 | 41,00 | 8,00 |
Tabu Random | 41,00 | 15,00 | 8,00 |
SA Random | 35,00 | 17,00 | 8,00 |
PPO Random | 45,00 | 39,00 | 13,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,96 | 0,86 | 1,00 |
Reference Optimos | 0,99 | 1,00 | 1,00 |
SA | 0,68 | 0,80 | 0,98 |
Tabu Search | 0,94 | 0,88 | 1,00 |
PPO | 0,94 | 0,94 | 0,98 |
Tabu Random | 0,78 | 0,60 | 0,98 |
SA Random | 0,73 | 0,68 | 1,00 |
PPO Random | 0,90 | 0,84 | 0,98 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 11.943,84 | 57.288,56 | 13.093,12 |
Reference Optimos | 1.231,15 | 0,00 | 16.105,32 |
SA | 44.380,42 | 145.330,56 | 32.912,96 |
Tabu Search | 32.572,43 | 96.853,24 | 16.542,56 |
PPO | 3.905,48 | 11.508,62 | 54.021,29 |
Tabu Random | 44.322,42 | 140.492,35 | 35.702,53 |
SA Random | 9.194,47 | 141.978,28 | 13.963,67 |
PPO Random | 19.913,55 | 58.921,94 | 25.432,49 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,97 | 0,96 | 1,33 |
Reference Optimos | 0,95 | 1,09 | 0,99 |
SA | 0,97 | 0,97 | 1,17 |
Tabu Search | 0,88 | 1,00 | 1,06 |
PPO | 0,97 | 0,98 | 0,99 |
Tabu Random | 0,97 | 1,00 | 1,01 |
SA Random | 1,25 | 0,97 | 1,15 |
PPO Random | 0,83 | 0,97 | 1,37 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,53 | 0,00 | 0,31 |
Reference Optimos | 0,47 | 1,00 | 0,69 |
SA | 0,04 | 0,09 | 0,00 |
Tabu Search | 0,26 | 0,61 | 0,54 |
PPO | 0,17 | 0,30 | 0,15 |
Tabu Random | 0,45 | 0,00 | 0,00 |
SA Random | 0,07 | 0,00 | 0,23 |
PPO Random | 0,00 | 0,00 | 0,08 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 42.044.521,00 | 41.035.979,10 | 41.461.760,95 |
Reference | 42.190.396,40 | 42.625.614,35 | 42.689.935,34 |
Reference Random | 42.366.701,18 | 42.561.152,22 | 42.480.832,52 |
Reference Optimos | 42.179.962,73 | 42.625.614,35 | 42.651.001,36 |
SA | 42.295.871,86 | 42.079.724,37 | 42.323.845,15 |
Tabu Search | 42.150.131,94 | 42.650.766,40 | 42.692.566,31 |
PPO | 42.229.110,27 | 42.672.010,76 | 42.214.365,71 |
Tabu Random | 42.198.516,53 | 41.983.662,10 | 41.447.310,40 |
SA Random | 42.334.991,62 | 42.370.681,44 | 42.297.213,99 |
PPO Random | 42.507.066,35 | 42.483.845,26 | 42.512.857,09 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 42.044.521,00 | 41.035.979,10 | 41.461.760,95 |
Reference | 40.511.363,26 | 40.891.617,05 | 41.496.367,12 |
Reference Random | 40.511.363,26 | 40.924.274,21 | 41.510.903,62 |
Reference Optimos | 40.615.200,00 | 40.891.617,05 | 41.496.367,12 |
SA | 41.215.377,05 | 40.649.684,84 | 40.341.465,75 |
Tabu Search | 40.889.476,81 | 40.891.617,05 | 41.222.681,50 |
PPO | 40.297.020,43 | 40.937.649,95 | 41.448.152,63 |
Tabu Random | 40.511.363,26 | 40.649.684,84 | 40.341.465,75 |
SA Random | 41.149.958,32 | 40.957.056,09 | 40.341.465,75 |
PPO Random | 41.098.342,91 | 40.403.956,28 | 41.510.903,62 |
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 5181 | 433 | 4.22143e+07 | 4.0297e+07 | 2.51078 | 5190 | 8.38344 | 718min (for 5181 Steps) |
|
Proximal Policy Optimization Random | 5407 | 715 | 4.25095e+07 | 4.10983e+07 | 2.15238 | 5417 | 6.30004 | 538min (for 5407 Steps) |
|
Simulated Annealing | 10001 | 909 | 4850 | 4.24021e+07 | 4.12154e+07 | 2 | 510 | 0.18976 | 85min (for 10001 Steps) |
Simulated Annealing Random | 2626 | 1076 | 22 | 4.23852e+07 | 4.115e+07 | 3.20748 | 868 | 1.39887 | 94min (for 2626 Steps) |
Tabu Search | 9991 | 1613 | 1150 | 4.21807e+07 | 4.08895e+07 | 2.91931 | 470 | 0.0067332 | 92min (for 9991 Steps) |
Tabu Search Random | 2378 | 967 | 0 | 4.22467e+07 | 4.05114e+07 | 2.42581 | 790 | 1.83766 | 82min (for 2378 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 5999 | 198 | 4.26699e+07 | 4.14482e+07 | 2.69663 | 6009 | 4.8629 | 501min (for 5999 Steps) |
|
Proximal Policy Optimization Random | 9991 | 454 | 4.27135e+07 | 4.15109e+07 | 2.83544 | 10000 | 4.04198 | 683min (for 9991 Steps) |
|
Simulated Annealing | 10006 | 1142 | 478 | 4.275e+07 | 4.14388e+07 | 13.5676 | 478 | 0.131001 | 77min (for 10006 Steps) |
Simulated Annealing Random | 839 | 363 | 0 | 4.25681e+07 | 4.18752e+07 | 16.7407 | 274 | 1.79834 | 30min (for 839 Steps) |
Tabu Search | 6988 | 421 | 1607 | 4.27518e+07 | 4.12227e+07 | 2.6 | 349 | 0.196693 | 51min (for 6988 Steps) |
Tabu Search Random | 128 | 38 | 0 | 4.20802e+07 | 4.10975e+07 | 2.61017 | 40 | 1.43653 | 3min (for 128 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 8051 | 2676 | 4.27068e+07 | 4.09376e+07 | 3.06264 | 8060 | 5.65617 | 718min (for 8051 Steps) |
|
Proximal Policy Optimization Random | 8751 | 1528 | 4.25273e+07 | 4.0404e+07 | 2.1759 | 8760 | 4.94335 | 718min (for 8751 Steps) |
|
Simulated Annealing | 10008 | 1185 | 4965 | 4.21387e+07 | 4.06497e+07 | 3.35955 | 533 | 0.151647 | 84min (for 10008 Steps) |
Simulated Annealing Random | 1067 | 494 | 0 | 4.25709e+07 | 4.1036e+07 | 2.73571 | 353 | 2.06465 | 35min (for 1067 Steps) |
Tabu Search | 9996 | 2104 | 1121 | 4.27049e+07 | 4.08916e+07 | 2.44721 | 528 | 1.03266 | 83min (for 9996 Steps) |
Tabu Search Random | 272 | 107 | 0 | 4.21376e+07 | 4.09571e+07 | 2.53165 | 88 | 0.154355 | 8min (for 272 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
SEP (Acronym in the paper) records patient pathways with suspected sepsis, a life-threatening infection, over one year in a hospital.
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference | 27,00 | 8,00 | 7,00 |
Reference Random | 19,00 | 5,00 | 7,00 |
Reference Optimos | 25,00 | 12,00 | 5,00 |
SA | 2,00 | 8,00 | 8,00 |
Tabu Search | 11,00 | 14,00 | 2,00 |
PPO | 25,00 | 10,00 | 3,00 |
Tabu Random | 9,00 | 1,00 | 1,00 |
SA Random | 15,00 | 5,00 | 12,00 |
PPO Random | 7,00 | 10,00 | 5,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 1,00 | 1,00 | 1,00 |
Reference Optimos | 1,00 | 0,94 | 0,95 |
SA | 0,64 | 0,56 | 0,95 |
Tabu Search | 1,00 | 0,85 | 0,95 |
PPO | 1,00 | 0,93 | 0,95 |
Tabu Random | 0,91 | 0,51 | 0,95 |
SA Random | 1,00 | 1,00 | 1,00 |
PPO Random | 0,75 | 0,59 | 0,95 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 18.889,32 | 11.197,12 | 0,00 |
Reference Optimos | 13.178,20 | 342.611,80 | 827.929,58 |
SA | 46.659,30 | 559.260,76 | 763.095,91 |
Tabu Search | 45.575,56 | 206.833,75 | 179.710,58 |
PPO | 18.746,65 | 369.574,35 | 311.571,90 |
Tabu Random | 60.559,17 | 640.252,01 | 218.352,75 |
SA Random | 18.465,39 | 11.197,12 | 0,00 |
PPO Random | 58.972,12 | 1.385.123,39 | 287.407,49 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 1,03 | 1,18 | 0,44 |
Reference Optimos | 0,89 | 0,88 | 0,71 |
SA | 0,88 | 0,91 | 0,84 |
Tabu Search | 1,39 | 0,71 | 0,86 |
PPO | 0,84 | 0,95 | 0,81 |
Tabu Random | 0,98 | 0,00 | 0,00 |
SA Random | 0,84 | 1,18 | 0,44 |
PPO Random | 0,95 | 1,11 | 0,84 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,07 | 0,62 | 1,00 |
Reference Optimos | 0,93 | 0,38 | 0,00 |
SA | 0,00 | 0,00 | 0,00 |
Tabu Search | 0,33 | 0,38 | 0,00 |
PPO | 0,59 | 0,00 | 0,00 |
Tabu Random | 0,04 | 0,00 | 0,00 |
SA Random | 0,04 | 0,62 | 1,00 |
PPO Random | 0,00 | 0,00 | 0,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 81.884.663,83 | 78.354.184,84 | 77.382.542,97 |
Reference | 48.953.445,18 | 90.904.175,17 | 118.667.196,38 |
Reference Random | 49.748.043,43 | 100.127.438,39 | 118.667.196,38 |
Reference Optimos | 48.887.886,84 | 86.763.900,52 | 79.868.329,19 |
SA | 48.981.957,29 | 75.362.790,22 | 79.854.360,14 |
Tabu Search | 49.340.890,25 | 78.094.062,27 | 77.669.925,99 |
PPO | 48.852.202,85 | 92.318.161,88 | 80.056.716,20 |
Tabu Random | 49.408.974,71 | 75.073.704,05 | 77.983.503,98 |
SA Random | 49.981.451,71 | 100.127.438,39 | 118.667.196,38 |
PPO Random | 48.593.383,09 | 74.766.027,53 | 79.378.748,37 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 81.884.663,83 | 78.354.184,84 | 77.382.542,97 |
Reference | 47.054.511,43 | 71.528.257,84 | 95.169.098,95 |
Reference Random | 47.054.511,43 | 93.615.262,32 | 95.169.098,95 |
Reference Optimos | 47.409.540,37 | 71.528.257,84 | 77.504.818,50 |
SA | 47.433.718,09 | 73.779.573,57 | 78.350.481,99 |
Tabu Search | 47.409.540,37 | 71.528.257,84 | 77.504.818,50 |
PPO | 45.437.286,89 | 85.317.002,71 | 79.791.185,01 |
Tabu Random | 47.054.511,43 | 75.073.704,05 | 77.983.503,98 |
SA Random | 47.241.669,76 | 93.615.262,32 | 95.169.098,95 |
PPO Random | 46.879.543,35 | 71.455.570,34 | 77.905.095,08 |
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 4821 | 7 | 4.88522e+07 | 4.54373e+07 | 2.65374 | 4830 | 8.7928 | 716min (for 4821 Steps) |
|
Proximal Policy Optimization Random | 2839 | 18 | 4.88577e+07 | 4.68795e+07 | 2.28247 | 2849 | 10.2445 | 445min (for 2839 Steps) |
|
Simulated Annealing | 81 | 1 | 69 | 4.98798e+07 | 4.98798e+07 | 2.1224 | 4 | 0.0010123 | 1min (for 81 Steps) |
Simulated Annealing Random | 2622 | 1180 | 1008 | 5.0022e+07 | 4.72417e+07 | 3.66416 | 868 | 0.631759 | 280min (for 2622 Steps) |
Tabu Search | 101 | 1 | 30 | 4.93868e+07 | 4.81111e+07 | 2.46034 | 5 | 0.00157211 | 1min (for 101 Steps) |
Tabu Search Random | 2501 | 1126 | 1136 | 4.91912e+07 | 4.70545e+07 | 2.37901 | 830 | 6.26755 | 298min (for 2501 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing Random
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 2945 | 9 | 8.00567e+07 | 7.97912e+07 | 2.32697 | 2955 | 7.66747 | 403min (for 2945 Steps) |
|
Proximal Policy Optimization Random | 3855 | 15 | 7.93788e+07 | 7.79051e+07 | 2.81407 | 3865 | 9.76478 | 510min (for 3855 Steps) |
|
Simulated Annealing | 131 | 2 | 114 | 7.80104e+07 | 7.74798e+07 | 2.10698 | 7 | 0.0012939 | 2min (for 131 Steps) |
Simulated Annealing Random | 2231 | 926 | 36 | 1.16187e+08 | 9.51691e+07 | 3.42619 | 740 | 6.37437 | 297min (for 2231 Steps) |
Tabu Search | 121 | 1 | 20 | 8.00764e+07 | 7.80771e+07 | 2.1309 | 6 | 0.00122361 | 2min (for 121 Steps) |
Tabu Search Random | 17 | 1 | 0 | 7.79835e+07 | 7.79835e+07 | 2.11549 | 3 | 3.10532 | 0min (for 17 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing Random
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 5207 | 20 | 9.44429e+07 | 8.5317e+07 | 2.51837 | 5217 | 8.0266 | 705min (for 5207 Steps) |
|
Proximal Policy Optimization Random | 5231 | 47 | 7.47033e+07 | 7.14556e+07 | 2.55251 | 5240 | 8.67956 | 717min (for 5231 Steps) |
|
Simulated Annealing | 141 | 2 | 152 | 7.4814e+07 | 7.4814e+07 | 2.7255 | 8 | 2.00736 | 2min (for 141 Steps) |
Simulated Annealing Random | 2402 | 1045 | 0 | 1.00127e+08 | 9.36153e+07 | 3.30269 | 798 | 0.234691 | 293min (for 2402 Steps) |
Tabu Search | 121 | 1 | 18 | 7.27851e+07 | 7.11963e+07 | 2.30249 | 6 | 0.0011708 | 2min (for 121 Steps) |
Tabu Search Random | 29 | 4 | 0 | 7.50737e+07 | 7.50737e+07 | 3.06194 | 7 | 5.81616 | 1min (for 29 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing Random
- Tabu Search Random
TRF (Acronym in the paper) - A road fines (Traffic) log that comes from an Italian local police information system handling traffic fines.
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference | 10,00 | 16,00 | 22,00 |
Reference Random | 8,00 | 15,00 | 22,00 |
Reference Optimos | 5,00 | 15,00 | 32,00 |
SA | 7,00 | 3,00 | 9,00 |
Tabu Search | 4,00 | 6,00 | 5,00 |
PPO | 5,00 | 17,00 | 29,00 |
Tabu Random | 5,00 | 15,00 | 6,00 |
SA Random | 4,00 | 3,00 | 6,00 |
PPO Random | 8,00 | 15,00 | 22,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 1,00 | 1,00 | 1,00 |
Reference Optimos | 1,00 | 1,00 | 1,00 |
SA | 0,93 | 0,96 | 1,00 |
Tabu Search | 0,94 | 0,97 | 1,00 |
PPO | 1,00 | 1,00 | 1,00 |
Tabu Random | 0,97 | 0,99 | 1,00 |
SA Random | 0,96 | 1,00 | 1,00 |
PPO Random | 1,00 | 1,00 | 1,00 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 30.622,38 | 21.885,52 | 0,00 |
Reference Optimos | 13.820,94 | 227.175,14 | 148.348,66 |
SA | 109.147,00 | 248.862,10 | 309.816,74 |
Tabu Search | 110.960,66 | 237.025,86 | 469.460,00 |
PPO | 13.820,94 | 227.175,14 | 198.400,91 |
Tabu Random | 108.571,56 | 114.943,76 | 1.203.658,64 |
SA Random | 110.626,92 | 96.732,90 | 331.225,12 |
PPO Random | 30.622,38 | 47.134,59 | 166.156,72 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 1,51 | 1,01 | 0,97 |
Reference Optimos | 1,40 | 1,33 | 0,88 |
SA | 0,81 | 0,98 | 1,27 |
Tabu Search | 0,90 | 0,93 | 0,95 |
PPO | 1,40 | 1,33 | 0,85 |
Tabu Random | 0,79 | 0,98 | 1,22 |
SA Random | 0,83 | 0,50 | 0,91 |
PPO Random | 1,51 | 1,01 | 0,80 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Reference Random | 0,70 | 0,31 | 1,00 |
Reference Optimos | 0,30 | 0,69 | 0,00 |
SA | 0,00 | 0,00 | 0,00 |
Tabu Search | 0,00 | 0,00 | 0,00 |
PPO | 0,30 | 0,69 | 0,00 |
Tabu Random | 0,00 | 0,00 | 0,23 |
SA Random | 0,00 | 0,12 | 0,05 |
PPO Random | 0,70 | 0,19 | 0,73 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 4.406.883,21 | 4.237.002,88 | 4.235.563,50 |
Reference | 1.245.508,53 | 3.236.511,47 | 11.249.272,88 |
Reference Random | 832.853,83 | 3.020.570,10 | 11.249.272,88 |
Reference Optimos | 2.558.990,90 | 12.385.577,44 | 11.269.135,07 |
SA | 2.334.547,68 | 4.668.437,81 | 60.213.221,47 |
Tabu Search | 2.324.422,20 | 10.161.927,77 | 4.546.275,16 |
PPO | 2.558.990,90 | 12.385.577,44 | 12.641.990,69 |
Tabu Random | 1.781.635,13 | 15.554.223,59 | 54.923.323,88 |
SA Random | 2.594.287,50 | 6.540.162,08 | 19.816.682,85 |
PPO Random | 832.853,83 | 3.400.742,03 | 11.422.093,12 |
Agent / Reference | Easy | Mid | Hard |
---|---|---|---|
Base | 4.406.883,21 | 4.237.002,88 | 4.235.563,50 |
Reference | 89.304,46 | 520.078,31 | 2.594.306,70 |
Reference Random | 89.304,46 | 520.078,31 | 2.594.306,70 |
Reference Optimos | 607.541,34 | 1.471.187,97 | 3.890.929,73 |
SA | 1.469.943,01 | 4.150.208,86 | 3.890.929,73 |
Tabu Search | 1.903.540,02 | 5.703.105,99 | 4.147.636,37 |
PPO | 607.541,34 | 1.471.187,97 | 4.235.563,50 |
Tabu Random | 866.616,18 | 1.471.969,73 | 2.940.590,48 |
SA Random | 1.730.491,24 | 520.078,31 | 2.594.306,70 |
PPO Random | 89.304,46 | 1.298.623,46 | 4.235.563,50 |
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 4808 | 136 | 2.55899e+06 | 607541 | 21.3091 | 4818 | 5.81425 | 415min (for 4808 Steps) |
|
Proximal Policy Optimization Random | 6224 | 414 | 832854 | 89304.5 | 6.77143 | 6234 | 5.06246 | 427min (for 6224 Steps) |
|
Simulated Annealing | 9992 | 427 | 2248 | 2.33455e+06 | 1.46994e+06 | 2.56383 | 577 | 4.71075 | 119min (for 9992 Steps) |
Simulated Annealing Random | 2614 | 1327 | 243 | 2.59429e+06 | 1.73049e+06 | 3.97904 | 868 | 4.64431 | 186min (for 2614 Steps) |
Tabu Search | 7057 | 216 | 3412 | 2.31422e+06 | 1.90354e+06 | 3.61417 | 485 | 2.00739 | 101min (for 7057 Steps) |
Tabu Search Random | 2615 | 1405 | 383 | 1.78164e+06 | 866616 | 4.03289 | 868 | 2.71143 | 153min (for 2615 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 1581 | 44 | 1.23984e+07 | 3.63188e+06 | 7.29797 | 1590 | 46.16 | 712min (for 1581 Steps) |
|
Proximal Policy Optimization Random | 3811 | 280 | 1.14576e+07 | 8.03874e+06 | 9.57933 | 3820 | 12.2776 | 716min (for 3811 Steps) |
|
Simulated Annealing | 9997 | 573 | 773 | 6.02035e+07 | 3.89093e+06 | 2.17771 | 598 | 0.238621 | 142min (for 9997 Steps) |
Simulated Annealing Random | 2581 | 1185 | 165 | 3.05005e+07 | 2.59431e+06 | 2.08344 | 857 | 5.73251 | 298min (for 2581 Steps) |
Tabu Search | 2977 | 181 | 1214 | 4.54628e+06 | 4.14764e+06 | 2.01762 | 186 | 0.0343043 | 47min (for 2977 Steps) |
Tabu Search Random | 1286 | 600 | 0 | 5.49233e+07 | 2.94059e+06 | 2.5 | 426 | 3.56618 | 184min (for 1286 Steps) |
Individual Pareto images:
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
Individual charts:
- Pareto Front Size
- Explored Solutions
- Potential New Base Solutions
- Average Cycle Time
- Min Cycle Time
- Average Batch Size
- Iteration Number
- Time per Step
Agent | Steps | Explored Solutions | Potential New Base Solutions | Average Cycle Time | Min Cycle Time | Average Batch Size | Iteration Number | Time per Step | Total Optimization Time |
---|---|---|---|---|---|---|---|---|---|
Proximal Policy Optimization | 8001 | 170 | 1.15895e+07 | 1.47119e+06 | 3.97139 | 8010 | 5.28506 | 717min (for 8001 Steps) |
|
Proximal Policy Optimization Random | 7171 | 146 | 3.52303e+06 | 1.29862e+06 | 49.9739 | 7180 | 5.20373 | 717min (for 7171 Steps) |
|
Simulated Annealing | 9998 | 522 | 1045 | 4.66844e+06 | 4.15021e+06 | 2.02184 | 573 | 0.437328 | 197min (for 9998 Steps) |
Simulated Annealing Random | 2614 | 1160 | 119 | 6.54016e+06 | 520078 | 2.102 | 868 | 6.59526 | 258min (for 2614 Steps) |
Tabu Search | 5098 | 229 | 2118 | 1.15793e+07 | 5.70311e+06 | 2.95782 | 276 | 0.121986 | 61min (for 5098 Steps) |
Tabu Search Random | 2615 | 1306 | 723 | 1.55542e+07 | 1.47197e+06 | 3.90977 | 868 | 4.81121 | 188min (for 2615 Steps) |
Individual Pareto images:
- Proximal Policy Optimization
- Proximal Policy Optimization Random
- Simulated Annealing
- Simulated Annealing Random
- Tabu Search
- Tabu Search Random
- After following the steps in Installation, you can just run the scripts in the
o2_evaluation/scripts
-folder. - The names of the scripts are self-explanatory, e.g.
insurance_proximal_policy_optimization_hard.sh
will run the proximal policy optimization agent on the insurance scenario with the hard mode. - The scripts are designed to be run in a conda enviorment named
opti2
, please modify the scripts if you want to use a different environment. - You may of course also run the optimizer with the current python version, for that you may modify the script files. E.g. change
export LD_LIBRARY_PATH="$HOME/lib"
module load any/python/3.8.3-conda
conda activate opti2
conda run -n opti2 --no-capture-output python ./o2_evaluation/data_collector.py \
--name "insurance_hard" \
--active-scenarios "insurance" \
--agents "Proximal Policy Optimization" \
....
to
python ./o2_evaluation/data_collector.py \
--name "insurance_hard" \
--active-scenarios "insurance" \
--agents "Proximal Policy Optimization" \
....
- You can use the data_collector cli tool to create any other scenario you want to evaluate. You may use the
-h
flag to see the available options. E.g.
python ./o2_evaluation/data_collector.py -h
- The Results will be saved in the
stores/run_<timestamp>
folder. There you find a pickledStore
object, that contains all the application state for the whole optimization run. - Refer to the following sections to see on how to parse that to a human readable format.
- After running the evaluation, you can analyze the results by running the
o2_evaluation/data_analyzer.py
script. - This Script will look at all the data in the
o2_evaluation/redumped_stores
folder and create a summary of the results.- Before running the script, you may want to copy over the
stores_*
andsolutions_*
files from yourstores
folder to theredumped_stores
folder. - Also you should copy the
evaluations
andstates
folders to the root of the repository.
- Before running the script, you may want to copy over the
- After running the analyzer, the results will be printed to the console and saved to the
o2_evaluation/analyzer_report.ssv
file. - Finally you can create a markdown report with the results by running the
o2_evaluation/markdown_creator.py
script.
- Create a fresh Python 3.10 virtual environment, e.g. with
conda create --name optimos-python python=3.10
- Install
poetry
on your system by following the offical guide. Make sure, poetry is NOT installed in the virtual environment. - Activate the environment, e.g. with
conda activate optimos-python
- Run
poetry install
in the root directory of this repository
For now there is no CLI interface for the optimizer, so you have to modify the main.py
script to your needs
- Open
main.py
in your editor - Change the
timetable_path
,constraints_path
andbpmn_path
to your needs.- If you need a basic set of constraints for your model, you can use the
create_constraints.py
script
- If you need a basic set of constraints for your model, you can use the
- Run
python main.py
to start the optimizer, you will see the output and process in the console - If you want to change settings like the number of iterations you can do so in the
main.py
script as well - LEGACY OPTIMOS SUPPORT: If you want optimos_v2 to behave like the old optimos, you can set the
optimos_legacy_mode
setting to True. This will disable all batching optimizations.
- Install Docker and Docker-Compose, refer to the official website for installation instructions
- Clone the pix-portal repository (
git clone https://github.com/AutomatedProcessImprovement/pix-portal.git
) - Checkout the
integrate-optimos-v2
branch (git checkout integrate-optimos-v2
) - Create the following secrets:
frontend/pix-web-ui/.session.secret
backend/services/api-server/.superuser_email.secret
backend/services/api-server/.system_email.secret
backend/services/api-server/.superuser_password.secret
backend/services/api-server/.key.secret
backend/services/api-server/.system_password.secret
- For local development/testing you can just fill them with example values, e.g. "secret" or "[email protected]".
- Furthermore create the following files:
backend/workers/mail/.secret_gmail_username
&backend/workers/mail/.secret_gmail_app_password
; Those are the credentials for the gmail account that sends out mails. The Password is a gmail app password, not the actual password. If you don't want to send out mails, you still need to create the files, but can enter any value.
- Create the following
.env
files:backend/workers/mail/.env
backend/workers/kronos/.env
backend/workers/simulation-prosimos/.env
backend/workers/bps-discovery-simod/.env
backend/workers/optimos/.env
backend/services/api-server/.env
backend/services/kronos/.env
- You will find a
.env.example
file in each of the folders, you can copy those file and rename them to.env
- Run
docker compose up --build
in the root directory of the pix-portal repository. You may add the-d
flag to run it in detached mode, so you can close the terminal afterwards. - This will take some time
- Open your browser and go to
localhost:9999
. You can use the credentials from the.superuser_email.secret
and.superuser_password.secret
files to login.
- Do all of the Usage within PIX (docker) steps above
- Stop the docker-based optimos:
docker compose stop optimos
- Modify the
backend/workers/optimos/.env
file to use the local host instead of the docker container, you can rename.env.example-local
to.env
for that - Create a new Python 3.10 virtual environment (e.g. with
conda create --name optimos-python python=3.10
) - Activate the environment, e.g. with
conda activate optimos-python
- Navigate to the
backend/workers/optimos
folder in the pix repo - Install the dependencies with
poetry install
- Start the optimos worker with
python python optimos_worker/main.py
- Alteratively: Start the optimos worker with the vs code debugger by running the
Launch Optimos Worker
configuration (most likely you'll need to adjust the python binary used there, you can do that in the.vscode/launch.json
file)
If you have pushed commits to the master, this change needs to be picked up by PIX, to do that do the following:
- Navigate to the folder
backend/workers/optimos
in the pix project - Update the
poetry.lock
file:poetry lock
- Rebuild & restart the optimos container:
docker compose up -d --build optimos
To run the tests, run pytest
. The tests should also automatically show up in the test explorer of your IDE. (For VSCode, you need to install the Python extension)
To collect coverage, run pytest --cov --cov-report=lcov:lcov.info --cov-report=term
. You can display it e.g. with the vscode extension Coverage Gutters.
While the code should be documented in most places, you can find additional information on e.g. the architecture in the docs folder
- Support to optimize Batching
- Fully Typed
- Unit Tested (with ~90% coverage)
- Follows a Action-Store-Reducer pattern, similar to Flux
- Multi-Threaded at important parts, takes cpu core count of host machine into account
- Almost all public interfaces are documented
- Class-Based (Not a huge monolithic script)
- No throwaway file creation; Everything in memory
- Immutable Data Structures, so no change to the timetable is ever unexpected