-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9efa27a
commit 6cdcb2c
Showing
38 changed files
with
1,548,087 additions
and
1,673 deletions.
There are no files selected for viewing
Empty file.
1,447 changes: 623 additions & 824 deletions
1,447
A1/.ipynb_checkpoints/a1-checkpoint.ipynb
100644 → 100755
Large diffs are not rendered by default.
Oops, something went wrong.
956 changes: 956 additions & 0 deletions
956
A1/.ipynb_checkpoints/extern_data_analysis-checkpoint.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
name: 2020CS10869 | ||
|
||
dependencies: | ||
- python=3.8 | ||
- numpy | ||
- pandas | ||
- scikit-learn | ||
- nltk | ||
- xgboost |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
https://owncloud.iitd.ac.in/nextcloud/index.php/s/LQmdC3mN69LTkxJ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,303 @@ | ||
import numpy as np | ||
import pandas as pd | ||
import nltk | ||
nltk.download('popular', quiet=True) | ||
from nltk.corpus import stopwords | ||
from nltk.tokenize import word_tokenize | ||
from nltk.stem import WordNetLemmatizer | ||
import re, sys, pickle | ||
|
||
from sklearn.model_selection import train_test_split, StratifiedKFold | ||
from sklearn.metrics import accuracy_score, f1_score | ||
from sklearn.feature_extraction.text import TfidfVectorizer | ||
from sklearn.decomposition import TruncatedSVD | ||
from sklearn.linear_model import LogisticRegression | ||
from sklearn.base import BaseEstimator, ClassifierMixin | ||
|
||
from xgboost import XGBClassifier | ||
|
||
def dummy(doc): | ||
return doc | ||
|
||
def create_feature(l, f): | ||
return [f(e) for e in l] | ||
|
||
class SentimentClassifier(BaseEstimator, ClassifierMixin): | ||
|
||
def __init__(self, C=1.0, dim=2000, max_iter=100): | ||
self.tfidf = TfidfVectorizer(analyzer='word', tokenizer=dummy, | ||
preprocessor=dummy, token_pattern=None) | ||
self.tfidf_bigram = TfidfVectorizer(analyzer='word', tokenizer=dummy, | ||
preprocessor=dummy, token_pattern=None) | ||
|
||
self.svd = TruncatedSVD(n_components=dim) | ||
self.svd_bigram = TruncatedSVD(n_components=dim) | ||
|
||
self.lr = LogisticRegression(solver='lbfgs', C=1, max_iter=100) | ||
self.lr_bal = LogisticRegression(solver='lbfgs', class_weight='balanced', C=1, max_iter=100) | ||
self.lr_bg = LogisticRegression(solver='lbfgs', C=1, max_iter=100) | ||
|
||
self.xgb = XGBClassifier( | ||
max_depth=6, | ||
colsample_bytree=0.2, | ||
colsample_bynode=0.8, | ||
n_estimators=20, | ||
objective='multi:softmax', | ||
learning_rate=0.3 | ||
) | ||
|
||
def transform(self, X): | ||
|
||
# tokenize | ||
X = create_feature(X, word_tokenize) | ||
|
||
# lowercase | ||
X = create_feature(X, lambda x: [w.lower() for w in x]) | ||
|
||
# PoS tagging | ||
X = create_feature(X, nltk.pos_tag) | ||
|
||
# negation via looking at PoS: negate all adjectives/verbs from a not/n't to the next | ||
# stopword/punctuation mark. Also do lower case | ||
def negate(pos_arr): | ||
neg_pos_arr = [] | ||
negating = False | ||
for word in pos_arr: | ||
w = word[0] | ||
if (w == 'not' or w == "n't"): | ||
negating = True | ||
neg_pos_arr.append(("POS", w, word[1])) | ||
continue | ||
elif (word[1] == '.' or word[1] == ':' or word[1] == 'IN' or word[1] == 'CC'): | ||
negating = False | ||
neg_pos_arr.append(("POS", w, word[1])) | ||
continue | ||
|
||
if negating: | ||
neg_pos_arr.append(("NEG", w, word[1])) | ||
else: | ||
neg_pos_arr.append(("POS", w, word[1])) | ||
|
||
return neg_pos_arr | ||
|
||
X = create_feature(X, negate) | ||
|
||
# stopword and punctuation removal | ||
sw = set(stopwords.words('english')) | ||
|
||
def stopword_removal(pos_arr): | ||
char_regex = re.compile(r"[A-Z]+") | ||
word_arr = [] | ||
for word in pos_arr: | ||
if (word[1] not in sw): | ||
word_arr.append(word) | ||
return word_arr | ||
|
||
X = create_feature(X, stopword_removal) | ||
|
||
# lemmatization | ||
wnl = WordNetLemmatizer() | ||
|
||
def lemmatize(pos_arr): | ||
# POS tag conversion | ||
pos_tag_map = { | ||
'J': 'a', # adjective | ||
'N': 'n', # noun | ||
'V': 'v', # verb | ||
'R': 'r' # adverb | ||
} | ||
lemmatized_list = [] | ||
for word in pos_arr: | ||
if word[2][0] in pos_tag_map: | ||
lemmatized_list.append((word[0], wnl.lemmatize(word[1], pos=pos_tag_map[word[2][0]]), word[2])) | ||
else: | ||
lemmatized_list.append(word) | ||
return lemmatized_list | ||
|
||
X = create_feature(X, lemmatize) | ||
|
||
return X | ||
|
||
def fit_ll_scores(self, X, y): | ||
# Zipf law encoding and dropping extraneous words | ||
tok_set = set() | ||
for review in X: | ||
for tok in review: | ||
tok_set.add(tok) | ||
|
||
toks = list(tok_set) | ||
rev_toks = {tok:i for i,tok in enumerate(toks)} | ||
tok_freq = np.zeros((5,len(toks))) | ||
|
||
for i, review in zip(y, X): | ||
for tok in review: | ||
tok_freq[i-1,rev_toks[tok]] += 1 | ||
|
||
tok_freq_lists = [sorted([(f,i) for i,f in enumerate(tok_freq[c])])[::-1][:1000] for c in range(5)] | ||
tok_freqs = set() | ||
for tfl in tok_freq_lists: | ||
tok_freqs = tok_freqs.union(set([i for f,i in tfl])) | ||
|
||
tok_freq_w = tok_freq.sum(axis=0) | ||
tok_freq_c = tok_freq.sum(axis=1) | ||
tot_tok = tok_freq.sum() | ||
|
||
def P_w(w): | ||
return (tok_freq_w[w]+5)/(tot_tok+5*len(toks)) | ||
|
||
def P_w_c(w, c): | ||
return (tok_freq[c,w]+1)/(tok_freq_c[c]+len(toks)) | ||
|
||
tok_lls = [([P_w_c(i,c)/P_w(i) for c in range(5)],i) for i in tok_freqs] | ||
tok_ll_ratios = [(max(l)/min(l),i) for l,i in tok_lls] | ||
top_ratios = sorted(tok_ll_ratios)[::-1] | ||
|
||
top_ratios_shortlisted = top_ratios[:200] | ||
|
||
self.bigram_toks = set(toks[i] for r,i in top_ratios_shortlisted) | ||
|
||
# feature goodness calc | ||
self.tok_ll_dict = {toks[b]: np.log(np.array(a)) for a,b in tok_lls} | ||
|
||
def predict_ll_scores(self, X): | ||
ll_scores = [] | ||
for pos_tokens in X: | ||
tok_lls = np.zeros(5) | ||
for tok in pos_tokens: | ||
if tok in self.tok_ll_dict: | ||
tok_lls += self.tok_ll_dict[tok] | ||
ll_scores.append(tok_lls) | ||
|
||
return np.array(ll_scores) | ||
|
||
def extract_bigrams(self, pos_arr): | ||
bigrams = [] | ||
n = len(pos_arr) | ||
tok_arr = [r[1] for r in pos_arr] | ||
|
||
for i in range(n-1): | ||
if pos_arr[i] in self.bigram_toks or \ | ||
(i == n-2 and pos_arr[i+1] in self.bigram_toks): | ||
bigrams.append("-".join(tok_arr[i:i+2])) | ||
|
||
return bigrams | ||
|
||
def fit(self, X, y): | ||
|
||
X = self.transform(X) | ||
|
||
self.fit_ll_scores(X, y) | ||
|
||
bigrams = create_feature(X, self.extract_bigrams) | ||
|
||
X_str = [[f"{t[0]}_{t[1]}_{t[2]}" for t in x] for x in X] | ||
|
||
train_tfidf = self.tfidf.fit_transform(X_str) | ||
train_svd = self.svd.fit_transform(train_tfidf) | ||
|
||
train_bigram_tfidf = self.tfidf_bigram.fit_transform(bigrams) | ||
train_bigram_svd = self.svd_bigram.fit_transform(train_bigram_tfidf) | ||
|
||
self.train_svd_mean = train_svd.mean(axis=0) | ||
self.train_svd_std = train_svd.std(axis=0) | ||
train_svd_white = (train_svd-self.train_svd_mean)/self.train_svd_std | ||
|
||
self.train_bigram_svd_mean = train_bigram_svd.mean(axis=0) | ||
self.train_bigram_svd_std = train_bigram_svd.std(axis=0) | ||
train_bigram_svd_white = (train_bigram_svd-self.train_bigram_svd_mean)/self.train_bigram_svd_std | ||
|
||
self.lr.fit(train_svd_white, y) | ||
self.lr_bal.fit(train_svd_white, y) | ||
self.lr_bg.fit(train_bigram_svd_white, y) | ||
|
||
train_log_probs = np.hstack([ | ||
self.lr.predict_log_proba(train_svd_white), | ||
self.lr_bal.predict_log_proba(train_svd_white), | ||
self.lr_bg.predict_log_proba(train_bigram_svd_white), | ||
self.predict_ll_scores(X) | ||
]) | ||
|
||
self.xgb.fit(train_log_probs, np.array(y)-1) | ||
|
||
def predict(self, X): | ||
|
||
X = self.transform(X) | ||
|
||
bigrams = create_feature(X, self.extract_bigrams) | ||
|
||
X_str = [[f"{t[0]}_{t[1]}_{t[2]}" for t in x] for x in X] | ||
|
||
X_tfidf = self.tfidf.transform(X_str) | ||
X_svd = self.svd.transform(X_tfidf) | ||
|
||
X_bigram_tfidf = self.tfidf_bigram.transform(bigrams) | ||
X_bigram_svd = self.svd_bigram.transform(X_bigram_tfidf) | ||
|
||
X_svd_white = (X_svd-self.train_svd_mean)/self.train_svd_std | ||
X_bigram_svd_white = (X_bigram_svd-self.train_bigram_svd_mean)/self.train_bigram_svd_std | ||
|
||
X_log_probs = np.hstack([ | ||
self.lr.predict_log_proba(X_svd_white), | ||
self.lr_bal.predict_log_proba(X_svd_white), | ||
self.lr_bg.predict_log_proba(X_bigram_svd_white), | ||
self.predict_ll_scores(X) | ||
]) | ||
|
||
return self.xgb.predict(X_log_probs)+1 | ||
|
||
def eval_metrics(true, preds): | ||
f1_micro = f1_score(true, preds, average='micro') | ||
f1_macro = f1_score(true, preds, average='macro') | ||
print(f" F1 micro: {f1_micro}") | ||
print(f" F1 macro: {f1_macro}") | ||
print(f" Final score: {(f1_micro+f1_macro)/2}") | ||
return f1_micro, f1_macro | ||
|
||
if __name__ == '__main__': | ||
|
||
# DEBUGGING | ||
# sys.argv = ['main.py', 'train', '/kaggle/input/col772-a1-data/train.csv', '/kaggle/working/trained_model'] | ||
# sys.argv = ['main.py', 'test', '/kaggle/working/trained_model', '/kaggle/input/col772-a1-data/sample_input.csv', '/kaggle/working/sample_output.csv'] | ||
# sys.argv = ['main.py', 'cv', '/kaggle/input/col772-a1-data/train.csv'] | ||
|
||
if sys.argv[1] == 'train': | ||
# train | ||
model = SentimentClassifier() | ||
train = pd.read_csv(sys.argv[2], header=None).dropna().iloc[:1000] | ||
model.fit(list(train[0]), list(train[1])) | ||
pickle.dump(model, open(sys.argv[3], 'wb')) | ||
|
||
elif sys.argv[1] == 'test': | ||
# predict | ||
model_path = sys.argv[2] | ||
test = pd.read_csv(sys.argv[3], header=None) | ||
outpath = sys.argv[4] | ||
|
||
model = pickle.load(open(model_path, 'rb')) | ||
preds = model.predict(test[0]) | ||
np.savetxt(outpath, preds, fmt='%d') | ||
|
||
elif sys.argv[1] == 'cv': | ||
# cross validate | ||
model = SentimentClassifier() | ||
df = pd.read_csv(sys.argv[2], header=None).dropna().iloc[:1000] | ||
data, labels = list(df[0]), df[1].to_numpy() | ||
skf = StratifiedKFold(n_splits=5) | ||
f1m = [] | ||
f1M = [] | ||
for i, (train, val) in enumerate(skf.split(df, df[1])): | ||
print(f'Fold {i}:') | ||
model.fit(list(df.iloc[train][0]), df.iloc[train][1]) | ||
preds = model.predict(list(df.iloc[val][0])) | ||
f1micro, f1macro = eval_metrics(df.iloc[val][1], preds) | ||
f1m.append(f1micro) | ||
f1M.append(f1macro) | ||
|
||
print() | ||
print('Averaged metrics:') | ||
print(f' F1 micro: {sum(f1m)/5}') | ||
print(f' F1 macro: {sum(f1M)/5}') | ||
print(f' Final Score: {(sum(f1m)+sum(f1M))/10}') | ||
|
||
else: | ||
print('Unrecognized option.') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
python3 main.py test $1 $2 $3 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
python3 main.py train $1 $2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
Thanks to Akarsh Jain, Kushal Gupta and Vaibhav Mishra for discussing expected f1 scores with me, and Vaibhav Agarwal, Shashwat Saxena and Japneet Singh for sharing the approaches and techiniques they were using (in addition to the scores they obtained). | ||
|
||
Overview: | ||
After feature extraction (Tokenization, PoS tagging, negation, stopword/punctuation removal, lemmatization), The code stacks four models: 3 logistic regression classifiers (one for unigrams, one for bigrams and one for balanced unigrams) and one wordwise sentiment classifier (as shown in the sentiment analysis slides). The stacked log probabilities are then fitted with a XGBoost tree. | ||
|
||
The 5-fold cross validated scores are as follows: | ||
f1micro = 0.7036 | ||
f1macro = 0.3812 | ||
f1avg = 0.5424 |
Empty file.
Empty file.
Empty file.
This file was deleted.
Oops, something went wrong.
Empty file.
Oops, something went wrong.