Skip to content

provide a Julia wrapper for the PATH Solver for solving mixed complementarity problems

License

Notifications You must be signed in to change notification settings

AndradeTiago/PATHSolver.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PATHSolver.jl

PATHSolver PATHSolver PATHSolver PATHSolver

Build Status Build status Coverage Status

This package provides a Julia wrapper of the PATH Solver for solving Mixed Complementarity Problems (MCP). This package requires compiled libraries available in ampl/pathlib and PathJulia.

This package (well the PATH Solver) solves the MCP of the following form:

lb ≤ x ≤ ub ⟂ F(x)

which means

  • x = lb, then F(x) ≥ 0
  • lb < x < ub, then F(x) = 0
  • x = ub, then F(x) ≤ 0

License

Without a license, the PATH Solver can solve problem instances up to with up to 300 variables and 2000 non-zeros. For larger problems, the web page of the PATH Solver provides a temporary license that is valid for a year. A new license is provided each year in the web page. Visit the license page of the PATH Solver.

For example, in Mac OS X: Edit your .bash_profile file. For example, if you have Atom editor:

atom ~/.bash_profile

and add the following two lines:

export PATH_LICENSE_STRING="---------------------------------------------------------------"

You can obtain the most recent PATH_LICENSE_STRING from the website of the PATH Solver. To reflect the change:

source ~/.bash_profile

Installation

To install,

Pkg.add("PATHSolver")

and to test if it works,

Pkg.test("PATHSolver")

To use algebraic modeling language for MCP, install and use the Complementarity.jl package.

Example

This example solves a Linear Complementarity Problem (LCP) in the form of:

0 ≤ x ⟂ F(x) ≥ 0

or

F(x)' x = 0
F(x) ≥ 0
x ≥ 0

when F(x) = Mx + q.

using PATHSolver

M = [0  0 -1 -1 ;
     0  0  1 -2 ;
     1 -1  2 -2 ;
     1  2 -2  4 ]

q = [2; 2; -2; -6]

myfunc(x) = M*x + q

n = 4
lb = zeros(n)
ub = 100*ones(n)

options(convergence_tolerance=1e-2, output=:yes, time_limit=3600)


z, f = solveMCP(myfunc, lb, ub)

You can also supply a function for Jacobian:

myjac(x) = M
z, f = solveMCP(myfunc, myjac, lb, ub)

When the Jacobian function is not supplied, it uses the automatic differentiation functionality of ForwardDiff.jl.

When the problem is a linear complementarity problem (LCP), one can use solveLCP:

z, f = solveLCP(myfunc, lb, ub)

To supply the Jacobian matrix:

z, f = solveLCP(myfunc, M, lb, ub)

These solveLCP functions do not evaluate the derivatives during iterations.

The result is:

Path 4.7.03: Standalone-C Link
4 row/cols, 12 non-zeros, 75.00% dense.
Reading options file path.opt
 > convergence_tolerance 1e-2
 > output yes
 > time_limit 3600
Read of options file complete.
Path 4.7.03 (Thu Jan 24 15:44:03 2013)
Written by Todd Munson, Steven Dirkse, and Michael Ferris
INITIAL POINT STATISTICS
Maximum of X. . . . . . . . . .  0.0000e+00 var: (x[    1])
Maximum of F. . . . . . . . . .  6.0000e+00 eqn: (f[    4])
Maximum of Grad F . . . . . . .  4.0000e+00 eqn: (f[    4])
                                            var: (x[    4])
INITIAL JACOBIAN NORM STATISTICS
Maximum Row Norm. . . . . . . .  9.0000e+00 eqn: (f[    4])
Minimum Row Norm. . . . . . . .  2.0000e+00 eqn: (f[    1])
Maximum Column Norm . . . . . .  9.0000e+00 var: (x[    4])
Minimum Column Norm . . . . . .  2.0000e+00 var: (x[    1])
Crash Log
major  func  diff  size  residual    step       prox   (label)
    0     0             1.2295e+01             0.0e+00 (f[    4])
    1     2     4     2 1.0267e+01  8.0e-01    0.0e+00 (f[    1])
    2     3     2     4 8.4839e-01  1.0e+00    0.0e+00 (f[    4])
    3     4     0     3 4.4409e-16  1.0e+00    0.0e+00 (f[    3])
pn_search terminated: no basis change.
Major Iteration Log
major minor  func  grad  residual    step  type prox    inorm  (label)
    0     0     5     4 4.4409e-16           I 0.0e+00 4.4e-16 (f[    3])
FINAL STATISTICS
Inf-Norm of Complementarity . .  3.5527e-16 eqn: (f[    3])
Inf-Norm of Normal Map. . . . .  4.4409e-16 eqn: (f[    3])
Inf-Norm of Fischer Function. .  4.4409e-16 eqn: (f[    3])
Inf-Norm of Grad Fischer Fcn. .  8.8818e-16 eqn: (f[    3])
Two-Norm of Grad Fischer Fcn. .  1.4043e-15
FINAL POINT STATISTICS
Maximum of X. . . . . . . . . .  2.8000e+00 var: (x[    1])
Maximum of F. . . . . . . . . .  4.0000e-01 eqn: (f[    2])
Maximum of Grad F . . . . . . .  4.0000e+00 eqn: (f[    4])
                                            var: (x[    4])
 ** EXIT - solution found.
Major Iterations. . . . 0
Minor Iterations. . . . 0
Restarts. . . . . . . . 0
Crash Iterations. . . . 3
Gradient Steps. . . . . 0
Function Evaluations. . 5
Gradient Evaluations. . 4
Basis Time. . . . . . . 0.000046
Total Time. . . . . . . 0.060200
Residual. . . . . . . . 4.440892e-16
Residual of 4.44089e-16 is OK
z = [2.8,0.0,0.8,1.2]
f = [0.0,0.40000000000000013,4.440892098500626e-16,0.0]

Labels

In the above output, the variable and function names are given as x and f automatically by the solver. If you want to give own names, you can do it as follows:

var_name = ["first var", "second var", "third var", "fourth var"]
con_name = ["func 1", "func 2", "func 3", "func 4"]

status, z, f = solveMCP(myfunc, lb, ub)
status, z, f = solveMCP(myfunc, lb, ub, var_name)
status, z, f = solveMCP(myfunc, lb, ub, var_name, con_name)
status, z, f = solveMCP(myfunc, myjac, lb, ub)
status, z, f = solveMCP(myfunc, myjac, lb, ub, var_name)
status, z, f = solveMCP(myfunc, myjac, lb, ub, var_name, con_name)

Solver Options

Before solving the problem, you can set the solver options; for example:

options(convergence_tolerance=1e-2, output=:yes, time_limit=3600, lemke_start=:first, nms_searchtype=:line)

The full list of options is available at: http://pages.cs.wisc.edu/~ferris/path/options.pdf

About

provide a Julia wrapper for the PATH Solver for solving mixed complementarity problems

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Julia 100.0%