-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_crr_build.py
195 lines (175 loc) · 6.34 KB
/
run_crr_build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from crr_labels import fantom, roadmap
from epigenomic_dataset import build, logger
import pandas as pd
from typing import List
import os
from tqdm.auto import tqdm
def get_bed_path(root: str, assembly: str, region: str, window_size: int) -> str:
return "{root}/{assembly}/{window_size}/{region}.bed.xz".format(
root=root,
assembly=assembly,
window_size=window_size,
region=region
)
def bed_files_exist(root: str, assembly: str, window_size: int):
return (
os.path.exists(get_bed_path(root, assembly, "promoters", window_size)) and
os.path.exists(get_bed_path(root, assembly, "enhancers", window_size))
)
def run_pipeline(
bed: pd.DataFrame,
root: str,
assembly: str,
region: str,
windows_size: int,
cell_lines: List[str]
):
path = get_bed_path(root, assembly, region, windows_size)
os.makedirs(os.path.dirname(path), exist_ok=True)
bed.to_csv(path, sep="\t", index=False)
regions_path = "{root}/{assembly}/{windows_size}/{region}/regions.bed".format(
root=root,
assembly=assembly,
windows_size=windows_size,
region=region
)
os.makedirs(os.path.dirname(regions_path), exist_ok=True)
bed["name"] = [
"{chrom}.{chromStart}.{chromEnd}".format(
**row.to_dict()
)
for _, row in bed.iterrows()
]
bed["score"] = 0
bed[["chrom", "chromStart", "chromEnd", "name", "score", "strand"]].to_csv(
regions_path,
sep="\t",
header=False,
index=False
)
build(
bed_path=regions_path,
cell_lines=cell_lines,
assembly=assembly,
targets_path="{root}/{assembly}/{windows_size}/{region}".format(
root=root,
assembly=assembly,
windows_size=windows_size,
region=region
),
extraction_workers=1,
concatenation_workers=20,
mine_max=True,
mine_min=False,
mine_mean=True,
mine_median=True,
mine_variance=False
)
if __name__ == "__main__":
cell_lines = ["GM12878", "A549", "H1", "HEK293", "HepG2", "K562"]
cell_lines_encode = cell_lines + ["MCF-7"]
cell_lines_fantom = cell_lines + ["MCF7"]
cell_lines_roadmap = ["A549", "GM12878", "H1", "HepG2", "K562"]
windows_sizes = (1024, 512, 256, 128, 64)
assembly = "hg38"
# We are not computing RoadMap right now
# because we are still choosing the states from the model to be used.
build_roadmap = False
for windows_size in tqdm(windows_sizes, desc="Parsing window sizes"):
enhancers_path = get_bed_path("fantom", assembly,
"enhancers", windows_size)
promoters_path = get_bed_path("fantom", assembly,
"promoters", windows_size)
####################################################
# HERE WE BUILD FANTOM #
####################################################
if not bed_files_exist("fantom", assembly, windows_size):
logger.info("Retrieving FANTOM labels")
enhancers, promoters = next(fantom(
# list of cell lines to be considered.
cell_lines=cell_lines_fantom,
# Genomic assembly to retrieve.
genome=assembly,
# window size to use for the various regions.
window_sizes=[windows_size],
))
for path in (enhancers_path, promoters_path):
os.makedirs(os.path.dirname(path), exist_ok=True)
enhancers.to_csv(
enhancers_path,
sep="\t",
index=False
)
promoters.to_csv(
promoters_path,
sep="\t",
index=False
)
else:
logger.info("Loading FANTOM labels.")
logger.info("Loading Enhancers.")
enhancers = pd.read_csv(
enhancers_path,
sep="\t",
low_memory=False
)
logger.info("Loading Promoters.")
promoters = pd.read_csv(
promoters_path,
sep="\t",
low_memory=False
)
logger.info("Starting to extract enhancers data.")
run_pipeline(
enhancers,
root="fantom",
assembly=assembly,
region="enhancers",
windows_size=windows_size,
cell_lines=cell_lines_encode
)
logger.info("Starting to extract promoters data.")
run_pipeline(
promoters,
root="fantom",
assembly=assembly,
region="promoters",
windows_size=windows_size,
cell_lines=cell_lines_encode
)
if build_roadmap:
####################################################
# HERE WE BUILD ROADMAP #
####################################################
if not bed_files_exist("roadmap", assembly, windows_size):
logger.info("Retrieving ROADMAP labels")
enhancers, promoters = roadmap(
# List of cell lines to be considered.
cell_lines=cell_lines_roadmap,
# Genomic assembly to retrieve.
genome=assembly,
# Window size to use for the various regions.
window_size=windows_size,
)
else:
print("Loading ROADMAP labels")
enhancers = pd.read_csv(get_bed_path(
"roadmap", assembly, "enhancers", windows_size), sep="\t")
promoters = pd.read_csv(get_bed_path(
"roadmap", assembly, "promoters", windows_size), sep="\t")
run_pipeline(
enhancers,
root="roadmap",
assembly=assembly,
region="enhancers",
windows_size=windows_size,
cell_lines=cell_lines_roadmap
)
run_pipeline(
promoters,
root="roadmap",
assembly=assembly,
region="promoters",
windows_size=windows_size,
cell_lines=cell_lines_roadmap
)