- This paper has been accepted in ICASSP 2024.
- You can download the trained models from here.
self.filesA, self.filesB = self.get_file_paths(self.data_path, 'UIEB') ---> UIEB or SUIM
- Dataset file structure should be as follows:
├── UIEB/SUIM
├── Train
├── inp
├── *.jpg/*.png
├── *.jpg/*.png
└── ...
├── gt
├── *.jpg/*.png
├── *.jpg/*.png
└── ...
├── Test
├── inp
├── *.jpg/*.png
├── *.jpg/*.png
└── ...
├── gt
├── *.jpg/*.png
├── *.jpg/*.png
└── ...
python train.py
-Please modify the line no. 28 in test.py with uieb.pt or suim.pt for different test data.
python test.py
@INPROCEEDINGS{10445832,
author={Pramanick, Alik and Sarma, Sandipan and Sur, Arijit},
booktitle={ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={X-CAUNET: Cross-Color Channel Attention with Underwater Image-Enhancing Transformer},
year={2024},
volume={},
number={},
pages={3550-3554},
keywords={Correlation;Image color analysis;Message passing;Speech enhancement;Transformers;Colored noise;Image enhancement;Cross-attention;transformer;underwater image enhancement;deep learning},
doi={10.1109/ICASSP48485.2024.10445832}}