Skip to content

Alik033/X-CAUNET

Repository files navigation

  • This paper has been accepted in ICASSP 2024.

Checkpoints

  • You can download the trained models from here.

Datasets

  • UIEB.
  • SUIM-E.
  • Please modify the line no. 31 in dataset.py for differnet datasets.
self.filesA, self.filesB = self.get_file_paths(self.data_path, 'UIEB') ---> UIEB or SUIM
  • Dataset file structure should be as follows:
├── UIEB/SUIM
    ├── Train
        ├── inp
            ├── *.jpg/*.png
            ├── *.jpg/*.png
            └── ...
        ├── gt
            ├── *.jpg/*.png
            ├── *.jpg/*.png
            └── ...
    ├── Test
        ├── inp
            ├── *.jpg/*.png
            ├── *.jpg/*.png
            └── ...
        ├── gt
            ├── *.jpg/*.png
            ├── *.jpg/*.png
            └── ...

Train

python train.py

Test

-Please modify the line no. 28 in test.py with uieb.pt or suim.pt for different test data.

python test.py

Citation

@INPROCEEDINGS{10445832,
  author={Pramanick, Alik and Sarma, Sandipan and Sur, Arijit},
  booktitle={ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={X-CAUNET: Cross-Color Channel Attention with Underwater Image-Enhancing Transformer}, 
  year={2024},
  volume={},
  number={},
  pages={3550-3554},
  keywords={Correlation;Image color analysis;Message passing;Speech enhancement;Transformers;Colored noise;Image enhancement;Cross-attention;transformer;underwater image enhancement;deep learning},
  doi={10.1109/ICASSP48485.2024.10445832}}

Acknowledgements

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages