ML-CrAIST : Multi-scale Low-high Frequency Information-based Cross Attention with Image Super-resolving Transformer
This paper has been accepetd in 27th International Conference on Pattern Recognition (ICPR 2024).
The official repository with Pytorch
Python 3.9.12
- create virtual environment
python3 -m venv ./venv_name
- activte virtual environment
source venv_name/bin/activate
- install dependencies
pip3 install torch torchvision opencv-python matplotlib pyyaml tqdm tensorboardX tensorboard einops thop
- Train the ML-CrAIST (Ours)
python train.py -v "CrAIST_X2_V1" -p train --train_yaml "trainSR_X2_DIV2K.yaml"
python train.py -v "CrAIST_X3_V1" -p train --train_yaml "trainSR_X3_DIV2K.yaml"
python train.py -v "CrAIST_X4_V1" -p train --train_yaml "trainSR_X4_DIV2K.yaml"
- Train the lighter version of ML-CrAIST (Ours-Li)
python train.py -v "CrAIST_X2_48" -p train --train_yaml "trainSR_X2_DIV2K_48.yaml"
python train.py -v "CrAIST_X3_48" -p train --train_yaml "trainSR_X3_DIV2K_48.yaml"
python train.py -v "CrAIST_X4_48" -p train --train_yaml "trainSR_X4_DIV2K_48.yaml"
python train.py -v "CrAIST_X2_V1" -p finetune --ckpt 79
Use version "CrAIST_X2_V1" for ML-CrAIST model (Ours) and "CrAIST_X2_48" for lighter model (Ours-Li).
-- | Ours | -- | -- | Ours-Li | -- | |
---|---|---|---|---|---|---|
Scale | Version | Epoch | Scale | Version | Epoch | |
2x | CrAIST_X2_V1 | 414 | 2x | CrAIST_X2_48 | 761 | |
3x | CrAIST_X3_V1 | 584 | 3x | CrAIST_X2_48 | 911 | |
4x | CrAIST_X4_V1 | 682 | 4x | CrAIST_X2_48 | 766 |
- e.g.,
python test.py -v "CrAIST_X2_V1" --checkpoint_epoch 414 -t tester_Matlab --test_dataset_name "Urban100"
- provide dataset path in env/env.json file
- other configurations are done using yaml files
@misc{pramanick2024mlcraistmultiscalelowhighfrequency,
title={ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross black Attention with Image Super-resolving Transformer},
author={Alik Pramanick and Utsav Bheda and Arijit Sur},
year={2024},
eprint={2408.09940},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2408.09940},
}