Skip to content

Alik033/ML-CrAIST

Repository files navigation

ML-CrAIST : Multi-scale Low-high Frequency Information-based Cross Attention with Image Super-resolving Transformer Views

This paper has been accepetd in 27th International Conference on Pattern Recognition (ICPR 2024).

The official repository with Pytorch

Installation

Python 3.9.12

  • create virtual environment
python3 -m venv ./venv_name
  • activte virtual environment
source venv_name/bin/activate
  • install dependencies
pip3 install torch torchvision opencv-python matplotlib pyyaml tqdm tensorboardX tensorboard einops thop

Train

  • Train the ML-CrAIST (Ours)
python train.py -v "CrAIST_X2_V1" -p train --train_yaml "trainSR_X2_DIV2K.yaml"
python train.py -v "CrAIST_X3_V1" -p train --train_yaml "trainSR_X3_DIV2K.yaml"
python train.py -v "CrAIST_X4_V1" -p train --train_yaml "trainSR_X4_DIV2K.yaml"
  • Train the lighter version of ML-CrAIST (Ours-Li)
python train.py -v "CrAIST_X2_48" -p train --train_yaml "trainSR_X2_DIV2K_48.yaml"
python train.py -v "CrAIST_X3_48" -p train --train_yaml "trainSR_X3_DIV2K_48.yaml"
python train.py -v "CrAIST_X4_48" -p train --train_yaml "trainSR_X4_DIV2K_48.yaml"

Fine-tune

python train.py -v "CrAIST_X2_V1" -p finetune --ckpt 79

Test

Use version "CrAIST_X2_V1" for ML-CrAIST model (Ours) and "CrAIST_X2_48" for lighter model (Ours-Li).

-- Ours -- -- Ours-Li --
Scale Version Epoch Scale Version Epoch
2x CrAIST_X2_V1 414 2x CrAIST_X2_48 761
3x CrAIST_X3_V1 584 3x CrAIST_X2_48 911
4x CrAIST_X4_V1 682 4x CrAIST_X2_48 766
  • e.g.,
python test.py -v "CrAIST_X2_V1" --checkpoint_epoch 414 -t tester_Matlab --test_dataset_name "Urban100"
  • provide dataset path in env/env.json file
  • other configurations are done using yaml files

Citation

@misc{pramanick2024mlcraistmultiscalelowhighfrequency,
      title={ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross black Attention with Image Super-resolving Transformer}, 
      author={Alik Pramanick and Utsav Bheda and Arijit Sur},
      year={2024},
      eprint={2408.09940},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2408.09940}, 
}

Acknowledgement

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages