Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
1.0.3

- Fixed documentation to mention bidirectional-forward and bidirectional-backward search as they were already implemented!
- Fixed bug that appeared when doing backward search and cross-validation
- Added Huber and L1-norm cross-validation errors to the LEGIT_cv output and choice of search_criterion in the stepwise search. These are robust criterion that handle outliers better than the usual L2-norm (which the R^2 is based on).
- Added argument to change the parameter of the Huber cross-validation error
- Added reference for Huber and L1-norm cross-validation errors
- Added newline between the AUC plot and the last line in vignette
  • Loading branch information
AlexiaJM authored Apr 4, 2017
1 parent 1190c8d commit 38a7f2d
Show file tree
Hide file tree
Showing 10 changed files with 157 additions and 75 deletions.
6 changes: 3 additions & 3 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Package: LEGIT
Title: Latent Environmental & Genetic InTeraction (LEGIT) Model
Version: 1.0.2
Date: 2017-03-23
Version: 1.0.3
Date: 2017-04-04
Author: Alexia Jolicoeur-Martineau <[email protected]>
Maintainer: Alexia Jolicoeur-Martineau <[email protected]>
Description: Constructs genotype x environment interaction (GxE) models where
Expand All @@ -25,4 +25,4 @@ RoxygenNote: 6.0.1
Suggests: knitr, rmarkdown
VignetteBuilder: knitr
NeedsCompilation: no
Packaged: 2017-04-02 22:06:37 UTC; Alexia
Packaged: 2017-04-04 19:13:50 UTC; ajolicoe
153 changes: 106 additions & 47 deletions R/LEGIT.R

Large diffs are not rendered by default.

Binary file modified build/vignette.rds
Binary file not shown.
1 change: 1 addition & 0 deletions inst/doc/LEGIT.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -146,4 +146,5 @@ We are a little off, especially with regards to the weights of the genetic varia
cv_5folds_bin = LEGIT_cv(train$data, train$G, train$E, y ~ G*E, cv_iter=1, cv_folds=5, classification=TRUE, family=binomial, seed=777)
pROC::plot.roc(cv_5folds_bin$roc_curve[[1]])
```

Although the weights of the genetic variants are a bit off, the model predictive power is good.
41 changes: 27 additions & 14 deletions inst/doc/LEGIT.html
Original file line number Diff line number Diff line change
Expand Up @@ -503,12 +503,18 @@ <h2>Example 1</h2>
## 3 g2 NA 250 0.00000 Inf 1135.100 Inf 1170.314 NA
## 4 g1_bad NA 250 0.00000 Inf 1155.719 Inf 1190.933 NA
## 5 g4 NA 250 0.00013 Inf 1164.285 Inf 1199.500 NA
## cv_R2_new cv_AUC_old cv_AUC_new
## 1 NA NA NA
## 2 NA NA NA
## 3 NA NA NA
## 4 NA NA NA
## 5 NA NA NA
## cv_R2_new cv_AUC_old cv_AUC_new cv_Huber_old cv_Huber_new cv_L1_old
## 1 NA NA NA NA NA NA
## 2 NA NA NA NA NA NA
## 3 NA NA NA NA NA NA
## 4 NA NA NA NA NA NA
## 5 NA NA NA NA NA NA
## cv_L1_new
## 1 NA
## 2 NA
## 3 NA
## 4 NA
## 5 NA
## Enter the index of the variable to be added:
## No gene added
</code></pre>
Expand All @@ -530,12 +536,18 @@ <h2>Example 1</h2>
## 3 g1 250 250 0.000000 1086.685 1013.285 1121.899 1052.021
## 4 g1_g3 250 250 0.000002 1086.685 1068.051 1121.899 1106.787
## 5 g4 250 250 0.012411 1086.685 1084.133 1121.899 1122.869
## cv_R2_old cv_R2_new cv_AUC_old cv_AUC_new
## 1 NA NA NA NA
## 2 NA NA NA NA
## 3 NA NA NA NA
## 4 NA NA NA NA
## 5 NA NA NA NA
## cv_R2_old cv_R2_new cv_AUC_old cv_AUC_new cv_Huber_old cv_Huber_new
## 1 NA NA NA NA NA NA
## 2 NA NA NA NA NA NA
## 3 NA NA NA NA NA NA
## 4 NA NA NA NA NA NA
## 5 NA NA NA NA NA NA
## cv_L1_old cv_L1_new
## 1 NA NA
## 2 NA NA
## 3 NA NA
## 4 NA NA
## 5 NA NA
## Enter the index of the variable to be added:
## No gene added
</code></pre>
Expand Down Expand Up @@ -661,8 +673,9 @@ <h2>Example 2</h2>
pROC::plot.roc(cv_5folds_bin$roc_curve[[1]])
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-12"/>
Although the weights of the genetic variants are a bit off, the model predictive power is good.</p>
<p><img src="" alt="plot of chunk unnamed-chunk-12"/></p>

<p>Although the weights of the genetic variants are a bit off, the model predictive power is good.</p>

</body>

Expand Down
9 changes: 7 additions & 2 deletions man/LEGIT_cv.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

7 changes: 4 additions & 3 deletions man/backward_step.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

6 changes: 3 additions & 3 deletions man/forward_step.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading

0 comments on commit 38a7f2d

Please sign in to comment.