-
-
Notifications
You must be signed in to change notification settings - Fork 102
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
cb467a1
commit 4dafc67
Showing
1 changed file
with
107 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
# ---------------------------------------------------------------------------- | ||
# PyGMTSAR | ||
# | ||
# This file is part of the PyGMTSAR project: https://github.com/mobigroup/gmtsar | ||
# | ||
# Copyright (c) 2023, Alexey Pechnikov | ||
# | ||
# Licensed under the BSD 3-Clause License (see LICENSE for details) | ||
# ---------------------------------------------------------------------------- | ||
class utils(): | ||
|
||
# @staticmethod | ||
# def regression(phase, topo, fit_intercept=True): | ||
# import numpy as np | ||
# import xarray as xr | ||
# from sklearn.linear_model import LinearRegression | ||
# from sklearn.pipeline import make_pipeline | ||
# from sklearn.preprocessing import StandardScaler | ||
# | ||
# # define on the same grid | ||
# topo = topo.reindex_like(phase, method='nearest') | ||
# | ||
# # build prediction model with or without plane removal (fit_intercept) | ||
# regr = make_pipeline(StandardScaler(), LinearRegression(fit_intercept=fit_intercept)) | ||
# | ||
# topo_values = topo.values.ravel() | ||
# phase_values = phase.values.ravel() | ||
# nanmask = np.isnan(a) | np.isnan(b) | ||
# | ||
# # fit on non-NaN values only and predict on the full grid | ||
# phase_topo = regr.fit(np.column_stack([topo_values[~nanmask]]), | ||
# np.column_stack([phase_values[~nanmask]]))\ | ||
# .predict(np.column_stack([topo_values])).reshape(phase.shape) | ||
# return xr.DataArray(phase_topo, coords=phase.coords) | ||
|
||
@staticmethod | ||
def histogram(data, bins, range): | ||
""" | ||
hist, bins = utils.histogram(corr60m.mean('pair'), 10, (0,1)) | ||
print ('bins', bins) | ||
hist = dask.compute(hist)[0] | ||
print (hist) | ||
""" | ||
import dask | ||
return dask.array.histogram(data, bins=bins, range=range) | ||
|
||
@staticmethod | ||
def corrcoef(data, mask_diagonal=False): | ||
""" | ||
Calculate the correlation coefficients matrix for a stack of interferograms. | ||
Parameters: | ||
- data (xarray.DataArray): A 3D input grid representing a stack of interferograms. | ||
The dimensions should include time, 'y', and 'x'. | ||
- mask_diagonal (bool): If True, the diagonal elements of the correlation matrix | ||
will be set to NaN to exclude self-correlation. | ||
Returns: | ||
xarray.DataArray: The cross-correlation matrix. | ||
Example: | ||
# plot variance-covariance matrix | ||
corr_stack = corr60m.mean('pair') | ||
corr = utils.corrcoef(unwrap.phase.where(corr_stack.where(corr_stack>0.7))) | ||
corr.where((corr)>0.7).plot.imshow(vmin=-1, vmax=1) | ||
plt.xticks(rotation=90) | ||
plt.show() | ||
# find the most correlated interferograms to exclude | ||
corr = utils.corrcoef(unwrap.phase.where(corr_stack.where(corr_stack>0.7)), mask_diagonal=True) | ||
df = corr.where(corr>0.7).to_dataframe('').reset_index().dropna() | ||
exclude = np.unique(np.concatenate([df.ref, df.rep])) | ||
exclude | ||
""" | ||
import xarray as xr | ||
import dask | ||
import numpy as np | ||
assert len(data.dims) == 3, 'ERROR: expected 3D input grid' | ||
stackdim = data.dims[0] | ||
stackvals = data[stackdim].values | ||
corr = dask.array.corrcoef(data.stack(points=['y', 'x']).dropna(dim='points').data).round(2) | ||
corr = xr.DataArray((corr), coords={'ref': stackvals, 'rep': stackvals}).rename('corr') | ||
corr['ref'] = corr['ref'].astype(str) | ||
corr['rep'] = corr['rep'].astype(str) | ||
if mask_diagonal: | ||
# set diagonal elements to NaN | ||
diagonal_mask = np.eye(len(stackvals), dtype=bool) | ||
return corr.where(~diagonal_mask, np.nan) | ||
return corr | ||
|
||
@staticmethod | ||
def binary_erosion(data, *args, **kwargs): | ||
""" | ||
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_erosion.html | ||
""" | ||
import xarray as xr | ||
from scipy.ndimage import binary_erosion | ||
# Perform binary erosion on the NumPy array data | ||
array = binary_erosion(data.values, *args, **kwargs) | ||
# Create a new DataArray from the eroded NumPy array | ||
array = xr.DataArray( | ||
array, | ||
coords=data.coords, | ||
dims=data.dims, | ||
attrs=data.attrs, | ||
) | ||
return array |