Programming environment version: the latest the best
-
Download the latest
"TBMethod-<\*version #\*>.paclet"
file to one's local machine; -
Run
PacletInstall["<*path-to-download*>/TBMethod-<*version #*>.paclet"]
.
- Outstanding
- For single kernel, load the package by
Needs["TBMethod`"]
- For parallel computation, load it by
Needs["TBMethod`"]
ParallelNeeds["TBMethod`"]
- Check the installation by
Scan[Echo @* Information] @ {"TBMethod`MDConstruct`*", "TBMethod`EigenSpect`*", "TBMethod`LGFF`*", "TBMethod`DataVisualization`*"}
and four lists of functions should be indexed out.
- Run
PacletUninstall["TBMethod"]
for uninstallation or reinstallation.
-
External degree of freedom (real-space coordinate): sufficient employment of the NNS (nearest neighbor search) algorithm, so that the total computation complexity tends to be fine as:
-
Model construction linear in system's size $ \text{O}(n) $:
- Generation of Hamiltonian matrices,
- Adaptive partition of central scattering region
-
Calculation of transport related quantities:
- 5-terminal Hall calculation in $ \text{O}(n^{1.7}) $
-
-
Internal degree of freedoms: spin, atomic orbital, (BdG) particle-hole, (Floquet) photon block, and lattice vibration polarization
-
Workflow coordinated with DeePTB on Slater-Koster model construction and transport calculation with nonidentity overlapping matrices
MMA-style documentation under construction
Coorperation is highly welcome.
- npj Quant. Mater. 10, 48 (2025).
- Phys. Rev. B 111, 085137 (2025).
- Phys. Rev. B 111, 155303 (2025).
- Phys. Rev. Lett. 133, 246606 (2024).
- Phys. Rev. Lett. 131, 086601 (2023).
- Phys. Rev. B 107, 075303 (2023).
- Phys. Rev. B (Letter) 106, L201407 (2022).
- Front. Phys. 17, 63503 (2022).
- Appl. Phys. Lett. 120, 084002 (2022).
- Chin. Phys. Lett. 39, 017302 (2022).
- Phys. Rev. B 101, 235432 (2020).
- Phys. Rev. B 100, 205408 (2019).
- Phys. Rev. B 95, 045424 (2017).
- Bernevig, Topological Insulators and Topological Superconductors, PUP, 2013.
- Shen, Topological Insulators: Dirac Equation in Condensed Matters, Springer, 2017.
- Phys. Rev. Lett. 61, 2015 (1988).
- Phys. Rev. Lett. 95, 146802 (2005).
- Phys. Rev. Lett. 95, 226801 (2005).
- Phys. Rev. B 82, 161414(R) (2010).
- Phys. Rev. B 84, 075119 (2011).
- Phys. Rev. Lett. 112, 037001 (2014).
- Phys. Rev. B 95, 195102 (2017).
- Phys. Rev. B 95, 245433 (2017).
- Phys. Rev. Lett. 124, 136403 (2020).
- Phys. Rev. Lett. 124, 166804 (2020).
- Datta, Electronic Transport in Mesoscopic Systems, CUP, 1995.
- Datta, Quantum Transport: Atom to Transistor, CUP, 2005.
- Wimmer, Quantum transport in nanostructures: From computational concepts to spintronics in graphene and magnetic tunnel junctions, Ph.D. Dissertation, Universität Regensburg, 2008.
- Qiao, Charge and Spin Transport in Two-Dimensional Mesoscopic Systems, Ph.D. Dissertation, HKU, 2009.
- Papior, Computational Tools and Studies of Graphene Nanostructures, Ph.D. Dissertation, TUD, 2016.
- J. Phys. F: Met. Phys. 14, 1205 (1984).
- J. Phys. F: Met. Phys. 15, 851 (1985).
- Phys. Rev. Lett. 97, 066603 (2006).
- Nanotechnology 18, 435402 (2007).
- Phys. Rev. B 83, 085412 (2011).
- Phys. Rev. B 91, 125408 (2015).
- Phys. Rev. B 97, 165405 (2018).
- Phys. Rev. B 100, 195417 (2019).