DATA:
- domain-based national: data/naerm/
- distance-based national: data/urbannet/
- regional: data/urbannet/
- edge files to evaluate criticality criteria:
- data/v9/
- data/naerm-edge-files/
NOTE: some files (national_transmission_lines.csv, EIC_transmission_lines.csv) exceeds git limit hence not uploaded see this in google drive directory ornl/powerflow-dihen/
Code for distance-based network:
path: distance-based-scripts/
- ablation_model.py get results for ablation models e.g.: python3 ablation_model.py data/urbannet/ result_ablation_national national
Input parameters:
a. data_path: data/urbannet/
b. outputfilename: result_ablation_national
c. region: national/regional
1. national
2. TX
3. EIC
- baseline_model.py: get results for baseline e.g.: python3 vary_k_urbannet.py ../data/urbannet/ result_baselines 50
Input parameters:
a. data_path: ../data/urbannet/
b. outputfilename: result_baselines
c. k: user defined int value, for paper we use 50
- vary_k_urbannet.py: get results varying size k for national and regional network e.g.: python3 vary_k_urbannet.py ../data/urbannet/ vary_k national
Input parameters:
a. data path: ../data/urbannet/
b. output file name: vary_k
c. region: network name
1. national
2. TX
3. EIC
4. uncertainty_bar_urbannet.py: get results to compute error bar for every ablation model on distance-based national
e.g.: python3 ../data/urbannet/ uncertain_national national 50 1
Input parameters:
a. data_path: ../data/urbannet/ b. output file name: uncertain_national c. region: network_name 1. national 2. TX 3. EIC d. k: user defined int value for size k, for paper we use 50 e. case: int value between 1-5, where, 1-> DIHEN 2-> CB (U) 3-> FP (K) 4-> NER (Sibling-dist) 5-> Random_Gaussian
- baseline_spread_k.py: results to obtain number of spread for baseline models vary size k
e.g., python3 ../data/urbannet/ spread_vary_k national
Input parameters:
a. data path: ../data/urbannet/ b. output file name: spread_vary_k c. region name: 1. national 2. TX 3. EIC
- critical_rank_full_urbannet.py : rank all nodes in the network considering k= #nodes in the network
Code for domain-based network:
path: domain-based-scripts/
- naerm_ablation_model.py : get ablation results
- naerm_baseline_model.py : get baseline results
- naerm_vary_k.py : get results varying size k
- uncertainty_bar_naerm.py : get results to compute error bar for every ablation model e.g.: python3 ../data/naerm/ 500 1
Input parameters:
a. data_path: ../data/naerm/ b. k: 500 c. case: int value between 1-5, where, 1-> DIHEN 2-> CB (U) 3-> FP (K) 4-> NER (Sibling-dist) 5-> Random_Gaussian
- critical_rank_full_naerm.py : rank all nodes in the network considering k= #nodes in the network
Code for plotting:
path: viz-scripts/