Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BayDAG Contribution #11: School Escorting Estimation Updates #777

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
141 changes: 101 additions & 40 deletions activitysim/abm/models/school_escorting.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,14 @@ def determine_escorting_participants(
& (persons.cdap_activity == "M")
]
households_with_escortees = escortees["household_id"]
choosers = choosers[choosers.index.isin(households_with_escortees)]
if len(households_with_escortees) == 0:
logger.warning("No households with escortees found!")
else:
tot_households = len(choosers)
choosers = choosers[choosers.index.isin(households_with_escortees)]
logger.info(
f"Proceeding with {len(choosers)} households with escortees out of {tot_households} total households"
)

# can specify different weights to determine chaperones
persontype_weight = model_settings.PERSON_WEIGHT
Expand Down Expand Up @@ -140,7 +147,7 @@ def add_prev_choices_to_choosers(
stage_alts,
how="left",
left_on=escorting_choice,
right_on=stage_alts.index.name,
right_index=True,
)
.set_index("household_id")
)
Expand Down Expand Up @@ -216,8 +223,12 @@ def create_school_escorting_bundles_table(choosers, tours, stage):
bundles : pd.DataFrame
one school escorting bundle per row
"""
# making a table of bundles
choosers = choosers.reset_index()
# want to keep household_id in columns, which is already there if running in estimation mode
if "household_id" in choosers.columns:
choosers = choosers.reset_index(drop=True)
else:
choosers = choosers.reset_index()
# creating a row for every school escorting bundle
choosers = choosers.loc[choosers.index.repeat(choosers["nbundles"])]

bundles = pd.DataFrame()
Expand Down Expand Up @@ -460,7 +471,11 @@ def school_escorting(

trace_hh_id = state.settings.trace_hh_id

alts = simulate.read_model_alts(state, model_settings.ALTS, set_index="Alt")
# FIXME setting index as "Alt" causes crash in estimation mode...
# happens in joint_tour_frequency_composition too!
# alts = simulate.read_model_alts(state, model_settings.ALTS, set_index="Alt")
alts = simulate.read_model_alts(state, model_settings.ALTS, set_index=None)
alts.index = alts["Alt"].values
jpn-- marked this conversation as resolved.
Show resolved Hide resolved

choosers, participant_columns = determine_escorting_participants(
households_merged, persons, model_settings
Expand All @@ -478,7 +493,9 @@ def school_escorting(
for stage_num, stage in enumerate(school_escorting_stages):
stage_trace_label = trace_label + "_" + stage
estimator = estimation.manager.begin_estimation(
state, "school_escorting_" + stage
state,
model_name="school_escorting_" + stage,
bundle_name="school_escorting",
)

model_spec_raw = state.filesystem.read_model_spec(
Expand Down Expand Up @@ -533,9 +550,26 @@ def school_escorting(

if estimator:
estimator.write_model_settings(model_settings, model_settings_file_name)
estimator.write_spec(model_settings)
estimator.write_coefficients(coefficients_df, model_settings)
estimator.write_spec(model_settings, tag=stage.upper() + "_SPEC")
estimator.write_coefficients(
coefficients_df, file_name=stage.upper() + "_COEFFICIENTS"
)
estimator.write_choosers(choosers)
estimator.write_alternatives(alts, bundle_directory=True)

# FIXME #interaction_simulate_estimation_requires_chooser_id_in_df_column
# shuold we do it here or have interaction_simulate do it?
# chooser index must be duplicated in column or it will be omitted from interaction_dataset
# estimation requires that chooser_id is either in index or a column of interaction_dataset
# so it can be reformatted (melted) and indexed by chooser_id and alt_id
assert choosers.index.name == "household_id"
assert "household_id" not in choosers.columns
choosers["household_id"] = choosers.index

# FIXME set_alt_id - do we need this for interaction_simulate estimation bundle tables?
estimator.set_alt_id("alt_id")
jpn-- marked this conversation as resolved.
Show resolved Hide resolved

estimator.set_chooser_id(choosers.index.name)

log_alt_losers = state.settings.log_alt_losers

Expand Down Expand Up @@ -580,47 +614,74 @@ def school_escorting(

if stage_num >= 1:
choosers["Alt"] = choices
choosers = choosers.join(alts, how="left", on="Alt")
choosers = choosers.join(alts.set_index("Alt"), how="left", on="Alt")
bundles = create_school_escorting_bundles_table(
choosers[choosers["Alt"] > 1], tours, stage
)
escort_bundles.append(bundles)

escort_bundles = pd.concat(escort_bundles)
escort_bundles["bundle_id"] = (
escort_bundles["household_id"] * 10
+ escort_bundles.groupby("household_id").cumcount()
+ 1
)
escort_bundles.sort_values(
by=["household_id", "school_escort_direction"],
ascending=[True, False],
inplace=True,
)

school_escort_tours = school_escort_tours_trips.create_pure_school_escort_tours(
state, escort_bundles
)
chauf_tour_id_map = {
v: k for k, v in school_escort_tours["bundle_id"].to_dict().items()
}
escort_bundles["chauf_tour_id"] = np.where(
escort_bundles["escort_type"] == "ride_share",
escort_bundles["first_mand_tour_id"],
escort_bundles["bundle_id"].map(chauf_tour_id_map),
)
assert (
escort_bundles["chauf_tour_id"].notnull().all()
), f"chauf_tour_id is null for {escort_bundles[escort_bundles['chauf_tour_id'].isna()]}. Check availability conditions."
# Only want to create bundles and tours and trips if at least one household has school escorting
if len(escort_bundles) > 0:
escort_bundles["bundle_id"] = (
escort_bundles["household_id"] * 10
+ escort_bundles.groupby("household_id").cumcount()
+ 1
)
escort_bundles.sort_values(
by=["household_id", "school_escort_direction"],
ascending=[True, False],
inplace=True,
)

tours = school_escort_tours_trips.add_pure_escort_tours(tours, school_escort_tours)
tours = school_escort_tours_trips.process_tours_after_escorting_model(
state, escort_bundles, tours
)
school_escort_tours = school_escort_tours_trips.create_pure_school_escort_tours(
state, escort_bundles
)
chauf_tour_id_map = {
v: k for k, v in school_escort_tours["bundle_id"].to_dict().items()
}
escort_bundles["chauf_tour_id"] = np.where(
escort_bundles["escort_type"] == "ride_share",
escort_bundles["first_mand_tour_id"],
escort_bundles["bundle_id"].map(chauf_tour_id_map),
)

school_escort_trips = school_escort_tours_trips.create_school_escort_trips(
escort_bundles
)
assert (
escort_bundles["chauf_tour_id"].notnull().all()
), f"chauf_tour_id is null for {escort_bundles[escort_bundles['chauf_tour_id'].isna()]}. Check availability conditions."

tours = school_escort_tours_trips.add_pure_escort_tours(
tours, school_escort_tours
)
tours = school_escort_tours_trips.process_tours_after_escorting_model(
state, escort_bundles, tours
)
school_escort_trips = school_escort_tours_trips.create_school_escort_trips(
escort_bundles
)

else:
# create empty school escort tours & trips tables to be used downstream
tours["school_esc_outbound"] = pd.NA
tours["school_esc_inbound"] = pd.NA
tours["school_escort_direction"] = pd.NA
tours["next_pure_escort_start"] = pd.NA
school_escort_tours = pd.DataFrame(columns=tours.columns)
trip_cols = [
"household_id",
"person_id",
"tour_id",
"trip_id",
"outbound",
"depart",
"purpose",
"destination",
"escort_participants",
"chauf_tour_id",
"primary_purpose",
]
school_escort_trips = pd.DataFrame(columns=trip_cols)

school_escort_trips["primary_purpose"] = school_escort_trips[
"primary_purpose"
Expand Down
17 changes: 17 additions & 0 deletions activitysim/abm/models/util/school_escort_tours_trips.py
Original file line number Diff line number Diff line change
Expand Up @@ -405,6 +405,19 @@ def merge_school_escort_trips_into_pipeline(state: workflow.State):
tours = state.get_dataframe("tours")
trips = state.get_dataframe("trips")

# checking to see if there are school escort trips to merge in
if len(school_escort_trips) == 0:
# if no trips, fill escorting columns with NA
trips[
[
"escort_participants",
"school_escort_direction",
"school_escort_trip_id",
]
] = pd.NA
state.add_table("trips", trips)
return trips

# want to remove stops if school escorting takes place on that half tour so we can replace them with the actual stops
out_se_tours = tours[
tours["school_esc_outbound"].isin(["pure_escort", "ride_share"])
Expand Down Expand Up @@ -643,6 +656,10 @@ def force_escortee_tour_modes_to_match_chauffeur(state: workflow.State, tours):
# Does it even matter if trip modes are getting matched later?
escort_bundles = state.get_dataframe("escort_bundles")

if len(escort_bundles) == 0:
# do not need to do anything if no escorting
return tours

# grabbing the school tour ids for each school escort bundle
se_tours = escort_bundles[["school_tour_ids", "chauf_tour_id"]].copy()
# merging in chauffeur tour mode
Expand Down
Loading