Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updates to fVDB #1869

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions fvdb/.gitignore
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
build/*
build/
/build/*
*.creator
*.includes
*.files
Expand Down
4 changes: 2 additions & 2 deletions fvdb/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ pip install .

To make sure that everything works by running tests:
```shell
python setup.py test
pytest tests/unit
```

### Building Documentation
Expand All @@ -118,7 +118,7 @@ docker run -it --gpus all --rm \
--mount type=bind,source="$HOME/.ssh",target=/root/.ssh \
--mount type=bind,source="$(pwd)",target=/fvdb \
fvdb-dev:latest \
conda run -n fvdb_test --no-capture-output python setup.py test
conda run -n fvdb_test --no-capture-output python setup.py develop
```


Expand Down
12 changes: 7 additions & 5 deletions fvdb/env/build_environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,18 +2,20 @@ name: fvdb_build
channels:
- nvidia/label/cuda-12.1.0
- pytorch
- conda-forge
dependencies:
- python=3.10
- pytorch=2.2
- pytorch-cuda=12.1
- pytorch::pytorch=2.2
- pytorch::pytorch-cuda=12.1
- git
- gitpython
- ca-certificates
- certifi
- openssl
- cuda
- cuda-nvcc
- nvidia/label/cuda-12.1.0::cuda
- nvidia/label/cuda-12.1.0::cuda-tools
- nvidia/label/cuda-12.1.0::cuda-nvcc
- nvidia/label/cuda-12.1.0::cuda-cccl
- nvidia/label/cuda-12.1.0::cuda-libraries-static
- gcc_linux-64=11
- gxx_linux-64=11
- setuptools
Expand Down
4 changes: 2 additions & 2 deletions fvdb/env/cutlass.patch
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ index e22c8be3..a29e6067 100644
storage = reinterpret_cast<uint16_t const &>(x);
#else
- __half_raw raw(x);
+ __half_raw raw(*(reinterpret_cast<const unsigned short*>(&x)));
+ __half_raw raw(*(reinterpret_cast<const __half_raw*>(&x)));
std::memcpy(&storage, &raw.x, sizeof(storage));
#endif
}
Expand All @@ -16,7 +16,7 @@ index e22c8be3..a29e6067 100644
storage = reinterpret_cast<uint16_t const &>(x);
#else
- __half_raw raw(x);
+ __half_raw raw(*(reinterpret_cast<const unsigned short*>(&x)));
+ __half_raw raw(*(reinterpret_cast<const __half_raw*>(&x)));
std::memcpy(&storage, &raw.x, sizeof(storage));
#endif
return *this;
Expand Down
12 changes: 7 additions & 5 deletions fvdb/env/test_environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3,20 +3,22 @@ channels:
- pyg
- nvidia/label/cuda-12.1.0
- pytorch
- conda-forge
dependencies:
- python=3.10
- pytorch=2.2
- pytorch-cuda=12.1
- pytorch::pytorch=2.2
- pytorch::pytorch-cuda=12.1
- tensorboard
- pip
- git
- gitpython
- ca-certificates
- certifi
- openssl
- cuda
- cuda-nvcc
- nvidia/label/cuda-12.1.0::cuda
- nvidia/label/cuda-12.1.0::cuda-tools
- nvidia/label/cuda-12.1.0::cuda-nvcc
- nvidia/label/cuda-12.1.0::cuda-cccl
- nvidia/label/cuda-12.1.0::cuda-libraries-static
- parameterized
- gcc_linux-64=11
- gxx_linux-64=11
Expand Down
23 changes: 19 additions & 4 deletions fvdb/fvdb/_Cpp.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -118,7 +118,9 @@ class JaggedTensor:
@property
def dtype(self) -> torch.dtype: ...
@property
def jidx(self) -> torch.ShortTensor: ...
def jidx(self) -> torch.IntTensor: ...
@property
def jlidx(self) -> torch.IntTensor: ...
@property
def joffsets(self) -> torch.LongTensor: ...
@property
Expand All @@ -134,6 +136,19 @@ class JaggedTensor:
@property
def requires_grad(self) -> bool: ...

@staticmethod
def from_data_and_indices(data: torch.Tensor, indices: torch.Tensor, num_tensors: int) -> JaggedTensor: ...

@staticmethod
def from_data_indices_and_list_ids(data: torch.Tensor, indices: torch.Tensor, list_ids: torch.Tensor, num_tensors: int) -> JaggedTensor: ...

@staticmethod
def from_data_and_offsets(data: torch.Tensor, offsets: torch.Tensor) -> JaggedTensor: ...

@staticmethod
def from_data_offsets_and_list_ids(data: torch.Tensor, offsets: torch.Tensor, list_ids: torch.Tensor) -> JaggedTensor: ...


JaggedTensorOrTensor = Union[torch.Tensor, JaggedTensor]

class GridBatch:
Expand Down Expand Up @@ -243,8 +258,8 @@ class GridBatch:
def cubes_in_grid(self, cube_centers: JaggedTensorOrTensor, cube_min: Vec3dOrScalar = 0.0, cube_max: Vec3dOrScalar = 0.0, ignore_disabled: bool = False) -> JaggedTensor: ...
def cubes_intersect_grid(self, cube_centers: JaggedTensorOrTensor, cube_min: Vec3dOrScalar = 0.0, cube_max: Vec3dOrScalar = 0.0, ignore_disabled: bool = False) -> JaggedTensor: ...

def ijk_to_index(self, ijk: JaggedTensorOrTensor) -> JaggedTensor: ...
def ijk_to_inv_index(self, ijk: JaggedTensorOrTensor) -> JaggedTensor: ...
def ijk_to_index(self, ijk: JaggedTensorOrTensor, cumulative: bool = False) -> JaggedTensor: ...
def ijk_to_inv_index(self, ijk: JaggedTensorOrTensor, cumulative: bool = False) -> JaggedTensor: ...
def neighbor_indexes(self, ijk: JaggedTensorOrTensor, extent: int, bitshift: int = 0) -> JaggedTensor: ...

def splat_bezier(self, points: JaggedTensorOrTensor, points_data: JaggedTensorOrTensor) -> JaggedTensor: ...
Expand All @@ -256,7 +271,7 @@ class GridBatch:


def segments_along_rays(self, ray_origins: JaggedTensorOrTensor, ray_directions: JaggedTensorOrTensor, max_segments: int, eps: float = 0.0, ignore_masked: bool = False) -> JaggedTensor: ...
def voxels_along_rays(self, ray_origins: JaggedTensorOrTensor, ray_directions: JaggedTensorOrTensor, max_voxels: int, eps: float = 0.0, return_ijk: bool = True) -> Tuple[JaggedTensor, JaggedTensor]: ...
def voxels_along_rays(self, ray_origins: JaggedTensorOrTensor, ray_directions: JaggedTensorOrTensor, max_voxels: int, eps: float = 0.0, return_ijk: bool = True, cumulative: bool = False) -> Tuple[JaggedTensor, JaggedTensor]: ...
def uniform_ray_samples(self, ray_origins: JaggedTensorOrTensor, ray_directions: JaggedTensorOrTensor, t_min: JaggedTensorOrTensor, t_max: JaggedTensorOrTensor, step_size: float, cone_angle: float = 0.0, include_end_segments : bool = True, return_midpoints: bool = False, eps: float = 0.0) -> JaggedTensor: ...
def ray_implicit_intersection(self, ray_origins: JaggedTensorOrTensor, ray_directions: JaggedTensorOrTensor, grid_scalars: JaggedTensorOrTensor, eps: float = 0.0) -> JaggedTensor: ...

Expand Down
2 changes: 1 addition & 1 deletion fvdb/fvdb/nn/vdbtensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ def _feature_ops(op, other: List[Union["VDBTensor", JaggedTensor, Any]]):
raw_features.append(o.feature.jdata)
elif isinstance(o, JaggedTensor):
assert pivot_tensor.total_voxels == o.jdata.size(0), "All tensors should have the same voxels"
assert pivot_tensor.grid.grid_count == len(o.joffsets), "All tensors should have the same batch size"
assert pivot_tensor.grid.grid_count == o.num_tensors, "All tensors should have the same batch size"
raw_features.append(o.jdata)
else:
raw_features.append(o)
Expand Down
Loading
Loading