Skip to content

AVAniketh0905/rag-chatbot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RAG Chatbot

Custom LLM

Custom LLM using huggingface(transformers). To build it locally, follow the given steps.

Custom LLM Endpoint

  • docker build -t rag-chat-test .
  • docker run rag-chat-test

PDF Extractor

Custom wrapper to extract important features from PDFs.

Features

  • extract data into text files
  • extract based on topics in index
  • extract based on page numbers
  • create sep folder for each book
  • create seperate text files for each topic

Embedder

Embeds the extarcted text into numerical vectors for model to understand. Uses langchain to create the custom embedder, with an In-Memory Vectore Store.

Deployment

Rag chat app deployment to AWS,

aws ecr get-login-password --region {region} | docker login --username AWS --password-stdin {username}.dkr.ecr.{region}.amazonaws.com

aws ecr create-repository --repository-name rag-chat-cohere --region {region}

docker tag rag-chat-test:latest {username}.dkr.ecr.{region}.amazonaws.com/rag-chat-cohere

docker push {username}.dkr.ecr.{region}.amazonaws.com/rag-chat-cohere

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published