The makefile.sh
script in this archive generates a netCDF map of derived soil properties file at resolutions of 30" (1km) and coarser.
The script uses the 1km SoilGrids v2.0 (Poggio et al., 2021) rasters of the following soil physical properties:
- sand (mass fraction)
- silt (mass fraction)
- clay (mass fraction)
- organic carbon content (mass fraction)
- coarse fragments (volume fraction)
- bulk density (cg cm-3)
The script also uses the following 250m soil type rasters from the 2017 SoilGrids data (Hengl et al, 2017):
- WRB (2006) soil subgroup class
- USDA (2014) soil suborder class
The USDA class is used to inform the pedotransfer function for bulk density following Balland et al. (2008). Other pedotransfer functions are based on Sandoval et al. (2024) and references therein.
Finally, the script adds a field of soil/regolith thickness to the output netCDF file that comes from the Pelletier et al. (2016) "gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses".
The following software is REQUIRED to run the script's programs:
cURL GDAL GMT NCO netCDF netCDF-Fortran
The raw soil data could be downloaded in advance, otherwise a data download script is also provided.
Compile the helper programs using make
before executing the script.
specify a directory for the output file, NB this directory has to exist before running the script
example: outdir=../global30minute
specify a target directory where the raw data is stored (or should be downloaded)
example: datadir=/Volumes/Amalanchier/datasets/soils
set the following flag to true
if the raw data should be downloaded
getdata=false
Balland, V., Pollacco, J. A. P., & Arp, P. A. (2008). Modeling soil hydraulic properties for a wide range of soil conditions. Ecological Modelling, 219(3-4), 300-316. doi:10.1016/j.ecolmodel.2008.07.009
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotic, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 12(2), e0169748. doi:10.1371/journal.pone.0169748
Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A., Niu, G. Y., Williams, Z., Brunke, M. A., & Gochis, D. (2016). A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. Journal of Advances in Modeling Earth Systems, 8(1), 41-65. doi:10.1002/2015ms000526
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217-240. doi:10.5194/soil-7-217-2021
Sandoval, D., Prentice, I. C., & Nóbrega, R. L. B. (2024). Simple process-led algorithms for simulating habitats (SPLASH v.2.0): robust calculations of water and energy fluxes. Geoscientific Model Development, 17(10), 4229-4309. doi:10.5194/gmd-17-4229-2024