Skip to content

Commit

Permalink
Add llama-405b configuration for v5p
Browse files Browse the repository at this point in the history
  • Loading branch information
suexu1025 committed Dec 10, 2024
1 parent 8e55ab1 commit b21f666
Show file tree
Hide file tree
Showing 3 changed files with 193 additions and 8 deletions.
9 changes: 1 addition & 8 deletions benchmarks/maxtext_trillium_model_configs.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,14 +19,7 @@
import typing
import xla_flags_library


@dataclasses.dataclass
class MaxTextModel:
model_name: str
model_type: str
tuning_params: dict[str, typing.Any]
xla_flags: str

from model_configs import MaxTextModel

default_basic = MaxTextModel(
model_name="default-basic",
Expand Down
165 changes: 165 additions & 0 deletions benchmarks/maxtext_viperfish_model_configs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
"""
Copyright 2024 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
"""Shared Benchmark config for v6e orchestrations."""

import dataclasses
import typing
import xla_flags_library

from model_configs import MaxTextModel


llama2_70b_4096_int8 = MaxTextModel(
model_name="llama2-70b-4096-int8",
model_type="llama2-70b",
tuning_params={
"per_device_batch_size": 4,
"remat_policy": "full",
"max_target_length": 4096,
"attention": "flash",
"gcs_metrics": True,
"use_iota_embed": True,
"reuse_example_batch": 1,
"enable_checkpointing": False,
"remat_policy": "save_dot_except_mlpwi",
"profiler": "xplane",
"dataset_type": "synthetic",
"reuse_example_batch": 1,
"tokenizer_path": "assets/tokenizer.llama2",
"quantization": "int8",
"steps": 100,
},
xla_flags=(
xla_flags_library.CF_FOR_ALL_GATHER
+ xla_flags_library.DATA_PARALLEL_OVERLAP
),
)

llama2_70b_4096_int8_ckp = MaxTextModel(
model_name="llama2-70b-4096-int8",
model_type="llama2-70b",
tuning_params={
"per_device_batch_size": 4,
"max_target_length": 4096,
"attention": "flash",
"gcs_metrics": True,
"use_iota_embed": True,
"reuse_example_batch": 1,
"enable_checkpointing": True,
"checkpoint_period": 200,
"remat_policy": "save_dot_except_mlpwi",
"profiler": "xplane",
"dataset_type": "synthetic",
"reuse_example_batch": 1,
"tokenizer_path": "assets/tokenizer.llama2",
"quantization": "int8",
"steps": 100,
},
xla_flags=(
xla_flags_library.CF_FOR_ALL_GATHER
+ xla_flags_library.DATA_PARALLEL_OVERLAP
),
)

llama2_70b_4096_real_data_int8 = MaxTextModel(
model_name="llama2-70b-4096-rd-int8",
model_type="llama2-70b",
tuning_params={
"per_device_batch_size": 4,
"remat_policy": "full",
"max_target_length": 4096,
"attention": "flash",
"gcs_metrics": True,
"use_iota_embed": True,
"reuse_example_batch": 1,
"enable_checkpointing": False,
"remat_policy": "save_dot_except_mlpwi",
"profiler": "xplane",
"dataset_path": "gs://max-datasets-rogue",
"dataset_type": "tfds",
"tokenizer_path": "assets/tokenizer.llama2",
"quantization": "int8",
"steps": 100,
},
xla_flags=(
xla_flags_library.CF_FOR_ALL_GATHER
+ xla_flags_library.DATA_PARALLEL_OVERLAP
),
)

llama2_70b_4096_real_data = MaxTextModel(
model_name="llama2-70b-4096-rd",
model_type="llama2-70b",
tuning_params={
"per_device_batch_size": 4,
"max_target_length": 4096,
"attention": "flash",
"gcs_metrics": True,
"use_iota_embed": True,
"reuse_example_batch": 1,
"enable_checkpointing": False,
"remat_policy": "save_dot_except_mlpwi",
"profiler": "xplane",
"dataset_path": "gs://max-datasets-rogue",
"dataset_type": "tfds",
"tokenizer_path": "assets/tokenizer.llama2",
"steps": 100,
},
xla_flags=(
xla_flags_library.CF_FOR_ALL_GATHER
+ xla_flags_library.DATA_PARALLEL_OVERLAP
),
)

_DENSE_VMEM_LIMIT=32768

DENSE_VMEM_LIMIT_FLAG = f" --xla_tpu_scoped_vmem_limit_kib={_DENSE_VMEM_LIMIT}"

llama3_1_405b_8192_fsdp_dcn = MaxTextModel(
model_name="llama3-1-405b-8192-fsdp-dcn",
model_type="llama3.1-405b",
tuning_params={
"per_device_batch_size": 1,
"remat_policy": "full",
"ici_fsdp_parallelism": -1,
"ici_tensor_parallelism": 8,
"max_target_length": 8192,
"attention": "flash",
"gcs_metrics": True,
"use_iota_embed": True,
"dataset_path": "gs://max-datasets-rogue",
"dataset_type": "synthetic",
"reuse_example_batch": 1,
"enable_checkpointing": False,
"profiler": "xplane",
"sa_block_q": 1024,
"sa_block_q_dkv": 2048,
"sa_block_q_dq": 2048,
"steps": 100,
},
xla_flags=(
xla_flags_library.CF_FOR_ALL_GATHER
+ xla_flags_library.DATA_PARALLEL_OVERLAP
+ DENSE_VMEM_LIMIT_FLAG
),
)
# List of all models
maxstar_models = [
llama2_70b_4096_int8,
llama2_70b_4096_int8_ckp,
llama2_70b_4096_real_data,
llama3_1_405b_8192_fsdp_dcn,
]
27 changes: 27 additions & 0 deletions benchmarks/model_configs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
@dataclasses.dataclass
class MaxTextModel:
model_name: str
model_type: str
tuning_params: dict[str, typing.Any]
xla_flags: str

@dataclasses.dataclass
class DatasetHParams:
dataset_path: str
dataset_name: str
dataset_type: str
train_split: str
eval_split: str
eval_steps: int
add_bos: bool
add_eos: bool
tokenizer_path: str

@dataclasses.dataclass
class ConvHParams:
global_batch_size: int
warmup_samples: int
decay_end_samples: int
total_tokens_to_train: int
learning_rate: float
eval_interval:int

0 comments on commit b21f666

Please sign in to comment.