Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Initialize notebook structure #6

Merged
merged 1 commit into from
Mar 27, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
152 changes: 128 additions & 24 deletions baybe-inhibitor.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,23 @@
{
"cell_type": "markdown",
"metadata": {},
"source": []
"source": [
"This project will focus on exploring the capabilities of Bayesian optimization, specifically employing BayBE, in the discovery of novel corrosion inhibitors for materials design. Initially, we will work with a randomly chosen subset from a comprehensive database of electrochemical responses of small organic molecules. Our goal is to assess how Bayesian optimization can speed up the screening process across the design space to identify promising compounds. We will compare different strategies for incorporating alloy information, while optimizing the experimental parameters with respect to the inhibitive performance of the screened compounds."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Initizalization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Loading libraries and data files:"
]
},
{
"cell_type": "code",
Expand All @@ -20,43 +36,131 @@
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from baybe import Campaign\n",
"\n",
"df_AA2024 = pd.read_excel('data/filtered_AA2024.xlsx')"
"df_AA2024 = pd.read_excel('data/filtered_AA2024.xlsx')\n",
"df_AA1000 = pd.read_excel('data/filtered_AA1000.xlsx')\n",
"df_Al = pd.read_excel('data/filtered_Al.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Time_h pH Inhib_Concentrat_M Efficiency\n",
"count 611.000000 611.000000 611.000000 611.000000\n",
"mean 135.801964 6.342062 0.006808 26.736841\n",
"std 201.683867 2.529080 0.014059 288.788317\n",
"min 0.500000 0.000000 0.000010 -4834.000000\n",
"25% 24.000000 4.000000 0.000500 30.000000\n",
"50% 24.000000 7.000000 0.001000 58.000000\n",
"75% 144.000000 7.000000 0.003000 87.950000\n",
"max 672.000000 10.000000 0.100000 100.000000\n"
]
}
],
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"print(df_AA2024.describe())"
"# Data Processing"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# This is another test"
"# Data Anaylsis"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Bayesian Optimization"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Search Space"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Objective"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Recommender"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Benchmarking"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Transfer Learning"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
Expand Down
Loading