Skip to content

Commit

Permalink
got stuff from main
Browse files Browse the repository at this point in the history
  • Loading branch information
lordmikerahl committed Mar 27, 2024
1 parent 5241c6f commit afffdee
Show file tree
Hide file tree
Showing 2 changed files with 206 additions and 0 deletions.
8 changes: 8 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# BayBE One more Time - Exploring Corrosion Inhibitors for Materials Design

This project will focus on exploring the capabilities of Bayesian optimization, specifically employing BayBE, in the discovery of novel corrosion inhibitors for materials design. Initially, we will work with a randomly chosen subset from a comprehensive database of electrochemical responses of small organic molecules. Our goal is to assess how Bayesian optimization can speed up the screening process across the design space to identify promising compounds. We will compare different strategies for incorporating alloy information, while optimizing the experimental parameters with respect to the inhibitive performance of the screened compounds.

## References
- Galvão, T.L.P., Ferreira, I., Kuznetsova, A. et al. CORDATA: an open data management web application to select corrosion inhibitors. npj Mater Degrad 6, 48 (2022).
- Özkan, C., Sahlmann, L., Feiler, C. et al. Laying the experimental foundation for corrosion inhibitor discovery through machine learning. npj Mater Degrad 8, 21 (2024).
- Würger, T., Mei, D., Vaghefinazari, B. et al. Exploring structure-property relationships in magnesium dissolution modulatorshttps://doi.org/10.1038/s41529-020-00148-z. npj Mater Degrad 5, 2 (2021).
198 changes: 198 additions & 0 deletions baybe-inhibitor.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Introduction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This project will focus on exploring the capabilities of Bayesian optimization, specifically employing BayBE, in the discovery of novel corrosion inhibitors for materials design. Initially, we will work with a randomly chosen subset from a comprehensive database of electrochemical responses of small organic molecules. Our goal is to assess how Bayesian optimization can speed up the screening process across the design space to identify promising compounds. We will compare different strategies for incorporating alloy information, while optimizing the experimental parameters with respect to the inhibitive performance of the screened compounds."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Initizalization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Loading libraries and data files:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from baybe import Campaign\n",
"\n",
"df_AA2024 = pd.read_excel('data/filtered_AA2024.xlsx')\n",
"df_AA1000 = pd.read_excel('data/filtered_AA1000.xlsx')\n",
"df_Al = pd.read_excel('data/filtered_Al.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data Processing"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Can is the best"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Can is the best"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data Anaylsis"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Bayesian Optimization"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Search Space"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Objective"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Recommender"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Benchmarking"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Transfer Learning"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

0 comments on commit afffdee

Please sign in to comment.