Skip to content

Commit 5e10921

Browse files
authored
Merge pull request #12 from AC-BO-Hackathon:tims-testing-cave
Add separate notebook
2 parents 54dd457 + ff331d0 commit 5e10921

File tree

1 file changed

+187
-0
lines changed

1 file changed

+187
-0
lines changed

src/tim_baybe-inhibitor.ipynb

Lines changed: 187 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,187 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Introduction"
8+
]
9+
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"This project will focus on exploring the capabilities of Bayesian optimization, specifically employing BayBE, in the discovery of novel corrosion inhibitors for materials design. Initially, we will work with a randomly chosen subset from a comprehensive database of electrochemical responses of small organic molecules. Our goal is to assess how Bayesian optimization can speed up the screening process across the design space to identify promising compounds. We will compare different strategies for incorporating alloy information, while optimizing the experimental parameters with respect to the inhibitive performance of the screened compounds."
15+
]
16+
},
17+
{
18+
"cell_type": "markdown",
19+
"metadata": {},
20+
"source": [
21+
"# Initizalization"
22+
]
23+
},
24+
{
25+
"cell_type": "markdown",
26+
"metadata": {},
27+
"source": [
28+
"Loading libraries and data files:"
29+
]
30+
},
31+
{
32+
"cell_type": "code",
33+
"execution_count": 2,
34+
"metadata": {},
35+
"outputs": [],
36+
"source": [
37+
"import pandas as pd\n",
38+
"import numpy as np\n",
39+
"from baybe import Campaign\n",
40+
"\n",
41+
"df_AA2024 = pd.read_excel('data/filtered_AA2024.xlsx')\n",
42+
"df_AA1000 = pd.read_excel('data/filtered_AA1000.xlsx')\n",
43+
"df_Al = pd.read_excel('data/filtered_Al.xlsx')"
44+
]
45+
},
46+
{
47+
"cell_type": "code",
48+
"execution_count": null,
49+
"metadata": {},
50+
"outputs": [],
51+
"source": []
52+
},
53+
{
54+
"cell_type": "markdown",
55+
"metadata": {},
56+
"source": [
57+
"# Data Processing"
58+
]
59+
},
60+
{
61+
"cell_type": "code",
62+
"execution_count": null,
63+
"metadata": {},
64+
"outputs": [],
65+
"source": []
66+
},
67+
{
68+
"cell_type": "markdown",
69+
"metadata": {},
70+
"source": [
71+
"# Data Anaylsis"
72+
]
73+
},
74+
{
75+
"cell_type": "code",
76+
"execution_count": null,
77+
"metadata": {},
78+
"outputs": [],
79+
"source": []
80+
},
81+
{
82+
"cell_type": "markdown",
83+
"metadata": {},
84+
"source": [
85+
"# Bayesian Optimization"
86+
]
87+
},
88+
{
89+
"cell_type": "code",
90+
"execution_count": null,
91+
"metadata": {},
92+
"outputs": [],
93+
"source": []
94+
},
95+
{
96+
"cell_type": "markdown",
97+
"metadata": {},
98+
"source": [
99+
"## Search Space"
100+
]
101+
},
102+
{
103+
"cell_type": "code",
104+
"execution_count": null,
105+
"metadata": {},
106+
"outputs": [],
107+
"source": []
108+
},
109+
{
110+
"cell_type": "markdown",
111+
"metadata": {},
112+
"source": [
113+
"## Objective"
114+
]
115+
},
116+
{
117+
"cell_type": "code",
118+
"execution_count": null,
119+
"metadata": {},
120+
"outputs": [],
121+
"source": []
122+
},
123+
{
124+
"cell_type": "markdown",
125+
"metadata": {},
126+
"source": [
127+
"## Recommender"
128+
]
129+
},
130+
{
131+
"cell_type": "code",
132+
"execution_count": null,
133+
"metadata": {},
134+
"outputs": [],
135+
"source": []
136+
},
137+
{
138+
"cell_type": "markdown",
139+
"metadata": {},
140+
"source": [
141+
"# Benchmarking"
142+
]
143+
},
144+
{
145+
"cell_type": "code",
146+
"execution_count": null,
147+
"metadata": {},
148+
"outputs": [],
149+
"source": []
150+
},
151+
{
152+
"cell_type": "markdown",
153+
"metadata": {},
154+
"source": [
155+
"# Transfer Learning"
156+
]
157+
},
158+
{
159+
"cell_type": "code",
160+
"execution_count": null,
161+
"metadata": {},
162+
"outputs": [],
163+
"source": []
164+
}
165+
],
166+
"metadata": {
167+
"kernelspec": {
168+
"display_name": "Python 3",
169+
"language": "python",
170+
"name": "python3"
171+
},
172+
"language_info": {
173+
"codemirror_mode": {
174+
"name": "ipython",
175+
"version": 3
176+
},
177+
"file_extension": ".py",
178+
"mimetype": "text/x-python",
179+
"name": "python",
180+
"nbconvert_exporter": "python",
181+
"pygments_lexer": "ipython3",
182+
"version": "3.10.12"
183+
}
184+
},
185+
"nbformat": 4,
186+
"nbformat_minor": 2
187+
}

0 commit comments

Comments
 (0)