Skip to content

Commit

Permalink
More calendar
Browse files Browse the repository at this point in the history
  • Loading branch information
lkaelbling committed Aug 24, 2024
1 parent caa8b07 commit a179af5
Show file tree
Hide file tree
Showing 2 changed files with 30 additions and 25 deletions.
38 changes: 19 additions & 19 deletions _modules/module-1.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,30 +29,30 @@ Sep/20
: **Student Holiday!**{: .label .label-gray} No recitation

Sep/24
: **Lecture 6**{: .label .label-red}
: **Lecture 6**{: .label .label-red} Bias/variance, regularization

Sep/26
: **Lecture 7**{: .label .label-red}
: **Lecture 7**{: .label .label-red} Evaluating estimators, consistency

Sep/27
: **Recitation**{: .label .label-purple}

Oct/1
: **Lecture 8**{: .label .label-red}
: **Lecture 8**{: .label .label-red} Classification, logistic regression <br>
HW2 due; HW3 out

Oct/3
: **Lecture 9**{: .label .label-red}
: **Lecture 9**{: .label .label-red} Trees, forests, nearest-neighbor

Oct/4
: **Recitation**{: .label .label-purple}

Oct/8
: **Lecture 10**{: .label .label-red}
: **Lecture 10**{: .label .label-red} Stochastic gradient descent <br>
HW3 due; MP1 out

Oct/10
: **Lecture 11**{: .label .label-red}
: **Lecture 11**{: .label .label-red} Neural networks

Oct/11
: **Recitation**{: .label .label-purple}
Expand All @@ -61,14 +61,14 @@ Oct/15
: **Holiday!**{: .label .label-gray} No lecture

Oct/17
: **Lecture 12**{: .label .label-red}
: **Lecture 12**{: .label .label-red} Scaling up neural networks <br>
MP1 due

Oct/18
: **Review sessions**{: .label .label-blue}

Oct/22
: **Lecture 13**{: .label .label-red}
: **Lecture 13**{: .label .label-red} Structured neural networks <br>
HW4 out

Oct/24
Expand All @@ -78,46 +78,46 @@ Oct/25
: **No recitation**{: .label .label-gray}

Oct/29
: **Lecture 14**{: .label .label-red}
: **Lecture 14**{: .label .label-red} Making guarantees

Oct/31
: **Lecture 15**{: .label .label-red}
: **Lecture 15**{: .label .label-red} Uncertainty quantification

Nov/1
: **Recitation**{: .label .label-purple}

Nov/5
: **Lecture 16**{: .label .label-red}
: **Lecture 16**{: .label .label-red} Modeling densities <br>
HW4 due; HW5 out

Nov/7
: **Lecture 17**{: .label .label-red}
: **Lecture 17**{: .label .label-red} Principal components analysis

Nov/8
: **Recitation**{: .label .label-purple}

Nov/12
: **Lecture 18**{: .label .label-red}
: **Lecture 18**{: .label .label-red} Handling missing data <br>
HW5 due; HW6 out

Nov/14
: **Lecture 19**{: .label .label-red}
: **Lecture 19**{: .label .label-red} Temporal and spatial data

Nov/15
: **Recitation**{: .label .label-purple}

Nov/19
: **Lecture 20**{: .label .label-red}
: **Lecture 20**{: .label .label-red} Graphical models <br>
HW6 due; MP2 out

Nov/21
: **Lecture 21**{: .label .label-red}
: **Lecture 21**{: .label .label-red} Modeling complex densities

Nov/22
: **Recitation**{: .label .label-purple}

Nov/26
: **Lecture 22**{: .label .label-red}
: **Lecture 22**{: .label .label-red} Diffusion and flow models

Nov/28
: **Holiday!**{: .label .label-gray} No lecture
Expand All @@ -126,10 +126,10 @@ Nov/15
: **Holiday!**{: .label .label-gray} No recitation

Dec/3
: **Lecture 23**{: .label .label-red}
: **Lecture 23**{: .label .label-red} Working with foundation models

Dec/5
: **Lecture 24**{: .label .label-red}
: **Lecture 24**{: .label .label-red} Applications in small-data regime

Dec/6
: **Recitation**{: .label .label-purple}
Expand Down
17 changes: 11 additions & 6 deletions info/calendar.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,20 +9,25 @@ nav_order: 0
# Calendar

{: .warning}
Topics are subject to update.

Rough semester calendar draft; dates/events are subject to change/update.
{% for module in site.modules %}
{{ module }}
{% endfor %}

# Primary textbooks
- [Probabilistic Machine Learning: An Introduction](https://probml.github.io/pml-book/book1.html), Kevin Murphy, MIT Press, 2022.
- [Probabilistic Machine Learning: Advanced Topics](https://probml.github.io/pml-book/book2.html), Kevin Murphy, MIT Press, 2023.

# Recommended Reading

All freely accessible (an MIT IP may be required):
# Other recommended reading

- [B] [Pattern Recognition and Machine Learning](https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf), Bishop; Springer, 2006.
- [HTF] [The Elements of Statistical Learning](https://hastie.su.domains/ElemStatLearn/), Hastie, Tibshirani, and Friedman; Springer, 2009.
- [SB]/[SSS] [Understanding Machine Learning: From Theory to Algorithms](http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning), Shalev-Shwartz and Ben-David; Cambridge University Press, 2014.
<!-- - [SB] [Reinforcement Learning: An Introduction](http://incompleteideas.net/book/RLbook2020trimmed.pdf), Sutton and Barton; The MIT Press, 2018. -->
- [JWHT] [An Introduction to Statistical Learning](https://www.statlearning.com/), James, Witten, Hastie, and Tibshirani; Springer, 2013.
<!-- - [BV] [Convex Optimization](https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf), Boyd and Vandenberghe; Cambridge University Press, 2004 -->

All freely accessible (an MIT IP may be required)




0 comments on commit a179af5

Please sign in to comment.