Sicheng Yu* · Chong Cheng* · Yifan Zhou · Xiaojun Yang · Hao Wang✉
The Hong Kong University of Science and Technology (GuangZhou)
(* Equal Contribution)
[Project page],[arxiv]
- Clone OpenGS-SLAM.
git clone https://github.com/3DAgentWorld/OpenGS-SLAM.git --recursive
cd opengs-slam
- Setup the environment.
conda env create -f environment.yml
conda activate opengs-slam
- Compile the cuda kernels for RoPE (as in CroCo v2 and DUSt3R).
cd croco/models/curope/
python setup.py build_ext --inplace
cd ../../../
Our test setup was:
- Ubuntu 20.04:
pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 cudatoolkit=11.8
- NVIDIA RTX A6000
You can download the 'DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth' checkpoint from the DUSt3R code repository, and save it to the 'checkpoints' folder.
Alternatively, download it directly using the following method:
mkdir -p checkpoints/
wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth -P checkpoints/
Please note that you must agree to the DUSt3R license when using it.
The processed data for the 9 Waymo segments can be downloaded via baidu or google.
## Taking segment-100613 as an example
CUDA_VISIBLE_DEVICES=0 python slam.py --config configs/mono/waymo/100613.yaml
## All 9 Waymo segments
bash run_waymo.sh
-
If you want to view the real-time interactive SLAM window, please change 'Results-use_gui' in base_config.yaml to True.
-
When running on an Ubuntu system, a GUI window will pop up.
-
Please organize your data format and modify the code in utils/dataset.py.
-
Depth map input interface is still retained in the code, although we didn't use it for SLAM.