Skip to content

Commit

Permalink
all
Browse files Browse the repository at this point in the history
  • Loading branch information
smallerhand committed Apr 28, 2018
1 parent f6bdbbe commit 5b77b74
Showing 1 changed file with 18 additions and 16 deletions.
34 changes: 18 additions & 16 deletions x_ksh/SA_cnn_ps3.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,32 +39,32 @@
p_keep_hidden = tf.placeholder(tf.float32, name="p_keep_hidden")

# L1 SoundIn shape=(?, 20, 100, 1)
W1 = tf.get_variable("W1", shape=[2, 2, 1, 32],initializer=tf.contrib.layers.xavier_initializer())
W1 = tf.get_variable("W1", shape=[2, 10, 1, 32],initializer=tf.contrib.layers.xavier_initializer())
L1 = tf.nn.conv2d(X_sound, W1, strides=[1, 1, 1, 1], padding='SAME')
L1 = tf.nn.elu(L1)
L1 = tf.nn.max_pool(L1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
L1 = tf.nn.max_pool(L1, ksize=[1, 3, 3, 1],strides=[1, 3, 3, 1], padding='SAME')
L1 = tf.nn.dropout(L1, p_keep_conv)

# L2 Input shape=(?,10,50,32)
W2 = tf.get_variable("W2", shape=[2, 2, 32, 64],initializer=tf.contrib.layers.xavier_initializer())
# L2 Input shape=(?,7,34,32)
W2 = tf.get_variable("W2", shape=[2, 10, 32, 64],initializer=tf.contrib.layers.xavier_initializer())
L2 = tf.nn.conv2d(L1, W2, strides=[1, 1, 1, 1], padding='SAME')
L2 = tf.nn.elu(L2)
L2 = tf.nn.max_pool(L2, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
L2 = tf.nn.max_pool(L2, ksize=[1, 3, 3, 1],strides=[1, 3, 3, 1], padding='SAME')
L2 = tf.nn.dropout(L2, p_keep_conv)

# L3 Input shape=(?,5,25,64)
W3 = tf.get_variable("W3", shape=[2, 2, 64, 128],initializer=tf.contrib.layers.xavier_initializer())
# L3 Input shape=(?,3,12,64)
W3 = tf.get_variable("W3", shape=[2, 10, 64, 128],initializer=tf.contrib.layers.xavier_initializer())
L3 = tf.nn.conv2d(L2, W3, strides=[1, 1, 1, 1], padding='SAME')
L3 = tf.nn.elu(L3)
L3 = tf.nn.max_pool(L3, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
L3 = tf.nn.max_pool(L3, ksize=[1, 3, 3, 1],strides=[1, 3, 3, 1], padding='SAME')
L3 = tf.nn.dropout(L3, p_keep_conv)
L3_flat= tf.reshape(L3, shape=[-1, 3*13*128])
L3_flat= tf.reshape(L3, shape=[-1, 4*128])

# Final FC 2*3*128 inputs -> 41 outputs
W4 = tf.get_variable("W4", shape=[3*13*128, 615],initializer=tf.contrib.layers.xavier_initializer())
W4 = tf.get_variable("W4", shape=[4*128, 512],initializer=tf.contrib.layers.xavier_initializer())
L4 = tf.nn.elu(tf.matmul(L3_flat, W4))
L4 = tf.nn.dropout(L4, p_keep_hidden)
W_o = tf.get_variable("W_o", shape=[615,41],initializer=tf.contrib.layers.xavier_initializer())
W_o = tf.get_variable("W_o", shape=[512,41],initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.random_normal([41]))
logits = tf.matmul(L4, W_o) + b

Expand Down Expand Up @@ -111,13 +111,15 @@
3) con2d layer * 3 + FC
lr=0.0002, epoch = 300
p_keep_conv, p_keep_hidden = 0.8, 0.7
win : (2, 10), (2,2), (2,2)
max_pool : (2,5), (3,3), (3,3)
accuracy: 51~60%
4) window를 정사각형 모양으로 바꿈
lr=0.0002, epoch = 300
p_keep_conv, p_keep_hidden = 0.8, 0.7
4) 3에서 윈도우 조절
win : (2, 10), (2,4), (2,3)
max_pool : (2,5), (3,3), (3,3)
accuracy: 53~65%
5) 3에서 윈도우 조절2
win : (2, 10), (2,10), (2,10)
max_pool : (3,3), (3,3), (3,3)
"""

0 comments on commit 5b77b74

Please sign in to comment.