-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblog.html
622 lines (576 loc) · 420 KB
/
blog.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
<!doctype html>
<html>
<head>
<meta charset='UTF-8'><meta name='viewport' content='width=device-width initial-scale=1'>
<link href='https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext' rel='stylesheet' type='text/css' /><style type='text/css'>html {overflow-x: initial !important;}:root { --bg-color:#ffffff; --text-color:#333333; --select-text-bg-color:#B5D6FC; --select-text-font-color:auto; --monospace:"Lucida Console",Consolas,"Courier",monospace; --title-bar-height:20px; }
.mac-os-11 { --title-bar-height:28px; }
html { font-size: 14px; background-color: var(--bg-color); color: var(--text-color); font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; -webkit-font-smoothing: antialiased; }
body { margin: 0px; padding: 0px; height: auto; bottom: 0px; top: 0px; left: 0px; right: 0px; font-size: 1rem; line-height: 1.42857; overflow-x: hidden; background: inherit; tab-size: 4; }
iframe { margin: auto; }
a.url { word-break: break-all; }
a:active, a:hover { outline: 0px; }
.in-text-selection, ::selection { text-shadow: none; background: var(--select-text-bg-color); color: var(--select-text-font-color); }
#write { margin: 0px auto; height: auto; width: inherit; word-break: normal; overflow-wrap: break-word; position: relative; white-space: normal; overflow-x: visible; padding-top: 36px; }
#write.first-line-indent p { text-indent: 2em; }
#write.first-line-indent li p, #write.first-line-indent p * { text-indent: 0px; }
#write.first-line-indent li { margin-left: 2em; }
.for-image #write { padding-left: 8px; padding-right: 8px; }
body.typora-export { padding-left: 30px; padding-right: 30px; }
.typora-export .footnote-line, .typora-export li, .typora-export p { white-space: pre-wrap; }
.typora-export .task-list-item input { pointer-events: none; }
@media screen and (max-width: 500px) {
body.typora-export { padding-left: 0px; padding-right: 0px; }
#write { padding-left: 20px; padding-right: 20px; }
.CodeMirror-sizer { margin-left: 0px !important; }
.CodeMirror-gutters { display: none !important; }
}
#write li > figure:last-child { margin-bottom: 0.5rem; }
#write ol, #write ul { position: relative; }
img { max-width: 100%; vertical-align: middle; image-orientation: from-image; }
button, input, select, textarea { color: inherit; font: inherit; }
input[type="checkbox"], input[type="radio"] { line-height: normal; padding: 0px; }
*, ::after, ::before { box-sizing: border-box; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p, #write pre { width: inherit; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p { position: relative; }
p { line-height: inherit; }
h1, h2, h3, h4, h5, h6 { break-after: avoid-page; break-inside: avoid; orphans: 4; }
p { orphans: 4; }
h1 { font-size: 2rem; }
h2 { font-size: 1.8rem; }
h3 { font-size: 1.6rem; }
h4 { font-size: 1.4rem; }
h5 { font-size: 1.2rem; }
h6 { font-size: 1rem; }
.md-math-block, .md-rawblock, h1, h2, h3, h4, h5, h6, p { margin-top: 1rem; margin-bottom: 1rem; }
.hidden { display: none; }
.md-blockmeta { color: rgb(204, 204, 204); font-weight: 700; font-style: italic; }
a { cursor: pointer; }
sup.md-footnote { padding: 2px 4px; background-color: rgba(238, 238, 238, 0.7); color: rgb(85, 85, 85); border-radius: 4px; cursor: pointer; }
sup.md-footnote a, sup.md-footnote a:hover { color: inherit; text-transform: inherit; text-decoration: inherit; }
#write input[type="checkbox"] { cursor: pointer; width: inherit; height: inherit; }
figure { overflow-x: auto; margin: 1.2em 0px; max-width: calc(100% + 16px); padding: 0px; }
figure > table { margin: 0px; }
tr { break-inside: avoid; break-after: auto; }
thead { display: table-header-group; }
table { border-collapse: collapse; border-spacing: 0px; width: 100%; overflow: auto; break-inside: auto; text-align: left; }
table.md-table td { min-width: 32px; }
.CodeMirror-gutters { border-right: 0px; background-color: inherit; }
.CodeMirror-linenumber { user-select: none; }
.CodeMirror { text-align: left; }
.CodeMirror-placeholder { opacity: 0.3; }
.CodeMirror pre { padding: 0px 4px; }
.CodeMirror-lines { padding: 0px; }
div.hr:focus { cursor: none; }
#write pre { white-space: pre-wrap; }
#write.fences-no-line-wrapping pre { white-space: pre; }
#write pre.ty-contain-cm { white-space: normal; }
.CodeMirror-gutters { margin-right: 4px; }
.md-fences { font-size: 0.9rem; display: block; break-inside: avoid; text-align: left; overflow: visible; white-space: pre; background: inherit; position: relative !important; }
.md-fences-adv-panel { width: 100%; margin-top: 10px; text-align: center; padding-top: 0px; padding-bottom: 8px; overflow-x: auto; }
#write .md-fences.mock-cm { white-space: pre-wrap; }
.md-fences.md-fences-with-lineno { padding-left: 0px; }
#write.fences-no-line-wrapping .md-fences.mock-cm { white-space: pre; overflow-x: auto; }
.md-fences.mock-cm.md-fences-with-lineno { padding-left: 8px; }
.CodeMirror-line, twitterwidget { break-inside: avoid; }
.footnotes { opacity: 0.8; font-size: 0.9rem; margin-top: 1em; margin-bottom: 1em; }
.footnotes + .footnotes { margin-top: 0px; }
.md-reset { margin: 0px; padding: 0px; border: 0px; outline: 0px; vertical-align: top; background: 0px 0px; text-decoration: none; text-shadow: none; float: none; position: static; width: auto; height: auto; white-space: nowrap; cursor: inherit; -webkit-tap-highlight-color: transparent; line-height: normal; font-weight: 400; text-align: left; box-sizing: content-box; direction: ltr; }
li div { padding-top: 0px; }
blockquote { margin: 1rem 0px; }
li .mathjax-block, li p { margin: 0.5rem 0px; }
li blockquote { margin: 1rem 0px; }
li { margin: 0px; position: relative; }
blockquote > :last-child { margin-bottom: 0px; }
blockquote > :first-child, li > :first-child { margin-top: 0px; }
.footnotes-area { color: rgb(136, 136, 136); margin-top: 0.714rem; padding-bottom: 0.143rem; white-space: normal; }
#write .footnote-line { white-space: pre-wrap; }
@media print {
body, html { border: 1px solid transparent; height: 99%; break-after: avoid; break-before: avoid; font-variant-ligatures: no-common-ligatures; }
#write { margin-top: 0px; padding-top: 0px; border-color: transparent !important; }
.typora-export * { -webkit-print-color-adjust: exact; }
.typora-export #write { break-after: avoid; }
.typora-export #write::after { height: 0px; }
.is-mac table { break-inside: avoid; }
.typora-export-show-outline .typora-export-sidebar { display: none; }
}
.footnote-line { margin-top: 0.714em; font-size: 0.7em; }
a img, img a { cursor: pointer; }
pre.md-meta-block { font-size: 0.8rem; min-height: 0.8rem; white-space: pre-wrap; background: rgb(204, 204, 204); display: block; overflow-x: hidden; }
p > .md-image:only-child:not(.md-img-error) img, p > img:only-child { display: block; margin: auto; }
#write.first-line-indent p > .md-image:only-child:not(.md-img-error) img { left: -2em; position: relative; }
p > .md-image:only-child { display: inline-block; width: 100%; }
#write .MathJax_Display { margin: 0.8em 0px 0px; }
.md-math-block { width: 100%; }
.md-math-block:not(:empty)::after { display: none; }
.MathJax_ref { fill: currentcolor; }
[contenteditable="true"]:active, [contenteditable="true"]:focus, [contenteditable="false"]:active, [contenteditable="false"]:focus { outline: 0px; box-shadow: none; }
.md-task-list-item { position: relative; list-style-type: none; }
.task-list-item.md-task-list-item { padding-left: 0px; }
.md-task-list-item > input { position: absolute; top: 0px; left: 0px; margin-left: -1.2em; margin-top: calc(1em - 10px); border: none; }
.math { font-size: 1rem; }
.md-toc { min-height: 3.58rem; position: relative; font-size: 0.9rem; border-radius: 10px; }
.md-toc-content { position: relative; margin-left: 0px; }
.md-toc-content::after, .md-toc::after { display: none; }
.md-toc-item { display: block; color: rgb(65, 131, 196); }
.md-toc-item a { text-decoration: none; }
.md-toc-inner:hover { text-decoration: underline; }
.md-toc-inner { display: inline-block; cursor: pointer; }
.md-toc-h1 .md-toc-inner { margin-left: 0px; font-weight: 700; }
.md-toc-h2 .md-toc-inner { margin-left: 2em; }
.md-toc-h3 .md-toc-inner { margin-left: 4em; }
.md-toc-h4 .md-toc-inner { margin-left: 6em; }
.md-toc-h5 .md-toc-inner { margin-left: 8em; }
.md-toc-h6 .md-toc-inner { margin-left: 10em; }
@media screen and (max-width: 48em) {
.md-toc-h3 .md-toc-inner { margin-left: 3.5em; }
.md-toc-h4 .md-toc-inner { margin-left: 5em; }
.md-toc-h5 .md-toc-inner { margin-left: 6.5em; }
.md-toc-h6 .md-toc-inner { margin-left: 8em; }
}
a.md-toc-inner { font-size: inherit; font-style: inherit; font-weight: inherit; line-height: inherit; }
.footnote-line a:not(.reversefootnote) { color: inherit; }
.md-attr { display: none; }
.md-fn-count::after { content: "."; }
code, pre, samp, tt { font-family: var(--monospace); }
kbd { margin: 0px 0.1em; padding: 0.1em 0.6em; font-size: 0.8em; color: rgb(36, 39, 41); background: rgb(255, 255, 255); border: 1px solid rgb(173, 179, 185); border-radius: 3px; box-shadow: rgba(12, 13, 14, 0.2) 0px 1px 0px, rgb(255, 255, 255) 0px 0px 0px 2px inset; white-space: nowrap; vertical-align: middle; }
.md-comment { color: rgb(162, 127, 3); opacity: 0.8; font-family: var(--monospace); }
code { text-align: left; vertical-align: initial; }
a.md-print-anchor { white-space: pre !important; border-width: initial !important; border-style: none !important; border-color: initial !important; display: inline-block !important; position: absolute !important; width: 1px !important; right: 0px !important; outline: 0px !important; background: 0px 0px !important; text-decoration: initial !important; text-shadow: initial !important; }
.md-inline-math .MathJax_SVG .noError { display: none !important; }
.html-for-mac .inline-math-svg .MathJax_SVG { vertical-align: 0.2px; }
.md-fences-math .MathJax_SVG_Display, .md-math-block .MathJax_SVG_Display { text-align: center; margin: 0px; position: relative; text-indent: 0px; max-width: none; max-height: none; min-height: 0px; min-width: 100%; width: auto; overflow-y: visible; display: block !important; }
.MathJax_SVG_Display, .md-inline-math .MathJax_SVG_Display { width: auto; margin: inherit; display: inline-block !important; }
.MathJax_SVG .MJX-monospace { font-family: var(--monospace); }
.MathJax_SVG .MJX-sans-serif { font-family: sans-serif; }
.MathJax_SVG { display: inline; font-style: normal; font-weight: 400; line-height: normal; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; zoom: 90%; }
#math-inline-preview-content { zoom: 1.1; }
.MathJax_SVG * { transition: none 0s ease 0s; }
.MathJax_SVG_Display svg { vertical-align: middle !important; margin-bottom: 0px !important; margin-top: 0px !important; }
.os-windows.monocolor-emoji .md-emoji { font-family: "Segoe UI Symbol", sans-serif; }
.md-diagram-panel > svg { max-width: 100%; }
[lang="flow"] svg, [lang="mermaid"] svg { max-width: 100%; height: auto; }
[lang="mermaid"] .node text { font-size: 1rem; }
table tr th { border-bottom: 0px; }
video { max-width: 100%; display: block; margin: 0px auto; }
iframe { max-width: 100%; width: 100%; border: none; }
.highlight td, .highlight tr { border: 0px; }
mark { background: rgb(255, 255, 0); color: rgb(0, 0, 0); }
.md-html-inline .md-plain, .md-html-inline strong, mark .md-inline-math, mark strong { color: inherit; }
.md-expand mark .md-meta { opacity: 0.3 !important; }
mark .md-meta { color: rgb(0, 0, 0); }
@media print {
.typora-export h1, .typora-export h2, .typora-export h3, .typora-export h4, .typora-export h5, .typora-export h6 { break-inside: avoid; }
}
.md-diagram-panel .messageText { stroke: none !important; }
.md-diagram-panel .start-state { fill: var(--node-fill); }
.md-diagram-panel .edgeLabel rect { opacity: 1 !important; }
.md-require-zoom-fix foreignobject { font-size: var(--mermaid-font-zoom); }
.md-fences.md-fences-math { font-size: 1em; }
.md-fences-math .MathJax_SVG_Display { margin-top: 8px; cursor: default; }
.md-fences-advanced:not(.md-focus) { padding: 0px; white-space: nowrap; border: 0px; }
.md-fences-advanced:not(.md-focus) { background: inherit; }
.typora-export-show-outline .typora-export-content { max-width: 1440px; margin: auto; display: flex; flex-direction: row; }
.typora-export-sidebar { width: 300px; font-size: 0.8rem; margin-top: 80px; margin-right: 18px; }
.typora-export-show-outline #write { --webkit-flex:2; flex: 2 1 0%; }
.typora-export-sidebar .outline-content { position: fixed; top: 0px; max-height: 100%; overflow: hidden auto; padding-bottom: 30px; padding-top: 60px; width: 300px; }
@media screen and (max-width: 1024px) {
.typora-export-sidebar, .typora-export-sidebar .outline-content { width: 240px; }
}
@media screen and (max-width: 800px) {
.typora-export-sidebar { display: none; }
}
.outline-content li, .outline-content ul { margin-left: 0px; margin-right: 0px; padding-left: 0px; padding-right: 0px; list-style: none; }
.outline-content ul { margin-top: 0px; margin-bottom: 0px; }
.outline-content strong { font-weight: 400; }
.outline-expander { width: 1rem; height: 1.42857rem; position: relative; display: table-cell; vertical-align: middle; cursor: pointer; padding-left: 4px; }
.outline-expander::before { content: ""; position: relative; font-family: Ionicons; display: inline-block; font-size: 8px; vertical-align: middle; }
.outline-item { padding-top: 3px; padding-bottom: 3px; cursor: pointer; }
.outline-expander:hover::before { content: ""; }
.outline-h1 > .outline-item { padding-left: 0px; }
.outline-h2 > .outline-item { padding-left: 1em; }
.outline-h3 > .outline-item { padding-left: 2em; }
.outline-h4 > .outline-item { padding-left: 3em; }
.outline-h5 > .outline-item { padding-left: 4em; }
.outline-h6 > .outline-item { padding-left: 5em; }
.outline-label { cursor: pointer; display: table-cell; vertical-align: middle; text-decoration: none; color: inherit; }
.outline-label:hover { text-decoration: underline; }
.outline-item:hover { border-color: rgb(245, 245, 245); background-color: var(--item-hover-bg-color); }
.outline-item:hover { margin-left: -28px; margin-right: -28px; border-left: 28px solid transparent; border-right: 28px solid transparent; }
.outline-item-single .outline-expander::before, .outline-item-single .outline-expander:hover::before { display: none; }
.outline-item-open > .outline-item > .outline-expander::before { content: ""; }
.outline-children { display: none; }
.info-panel-tab-wrapper { display: none; }
.outline-item-open > .outline-children { display: block; }
.typora-export .outline-item { padding-top: 1px; padding-bottom: 1px; }
.typora-export .outline-item:hover { margin-right: -8px; border-right: 8px solid transparent; }
.typora-export .outline-expander::before { content: "+"; font-family: inherit; top: -1px; }
.typora-export .outline-expander:hover::before, .typora-export .outline-item-open > .outline-item > .outline-expander::before { content: "−"; }
.typora-export-collapse-outline .outline-children { display: none; }
.typora-export-collapse-outline .outline-item-open > .outline-children, .typora-export-no-collapse-outline .outline-children { display: block; }
.typora-export-no-collapse-outline .outline-expander::before { content: "" !important; }
.typora-export-show-outline .outline-item-active > .outline-item .outline-label { font-weight: 700; }
:root {
--side-bar-bg-color: #fafafa;
--control-text-color: #777;
}
@include-when-export url(https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext);
/* open-sans-regular - latin-ext_latin */
/* open-sans-italic - latin-ext_latin */
/* open-sans-700 - latin-ext_latin */
/* open-sans-700italic - latin-ext_latin */
html {
font-size: 16px;
}
body {
font-family: "Open Sans","Clear Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
color: rgb(51, 51, 51);
line-height: 1.6;
}
#write {
max-width: 860px;
margin: 0 auto;
padding: 30px;
padding-bottom: 100px;
}
@media only screen and (min-width: 1400px) {
#write {
max-width: 1024px;
}
}
@media only screen and (min-width: 1800px) {
#write {
max-width: 1200px;
}
}
#write > ul:first-child,
#write > ol:first-child{
margin-top: 30px;
}
a {
color: #4183C4;
}
h1,
h2,
h3,
h4,
h5,
h6 {
position: relative;
margin-top: 1rem;
margin-bottom: 1rem;
font-weight: bold;
line-height: 1.4;
cursor: text;
}
h1:hover a.anchor,
h2:hover a.anchor,
h3:hover a.anchor,
h4:hover a.anchor,
h5:hover a.anchor,
h6:hover a.anchor {
text-decoration: none;
}
h1 tt,
h1 code {
font-size: inherit;
}
h2 tt,
h2 code {
font-size: inherit;
}
h3 tt,
h3 code {
font-size: inherit;
}
h4 tt,
h4 code {
font-size: inherit;
}
h5 tt,
h5 code {
font-size: inherit;
}
h6 tt,
h6 code {
font-size: inherit;
}
h1 {
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h2 {
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
/*@media print {
.typora-export h1,
.typora-export h2 {
border-bottom: none;
padding-bottom: initial;
}
.typora-export h1::after,
.typora-export h2::after {
content: "";
display: block;
height: 100px;
margin-top: -96px;
border-top: 1px solid #eee;
}
}*/
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h4 {
font-size: 1.25em;
}
h5 {
font-size: 1em;
}
h6 {
font-size: 1em;
color: #777;
}
p,
blockquote,
ul,
ol,
dl,
table{
margin: 0.8em 0;
}
li>ol,
li>ul {
margin: 0 0;
}
hr {
height: 2px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
overflow: hidden;
box-sizing: content-box;
}
li p.first {
display: inline-block;
}
ul,
ol {
padding-left: 30px;
}
ul:first-child,
ol:first-child {
margin-top: 0;
}
ul:last-child,
ol:last-child {
margin-bottom: 0;
}
blockquote {
border-left: 4px solid #dfe2e5;
padding: 0 15px;
color: #777777;
}
blockquote blockquote {
padding-right: 0;
}
table {
padding: 0;
word-break: initial;
}
table tr {
border: 1px solid #dfe2e5;
margin: 0;
padding: 0;
}
table tr:nth-child(2n),
thead {
background-color: #f8f8f8;
}
table th {
font-weight: bold;
border: 1px solid #dfe2e5;
border-bottom: 0;
margin: 0;
padding: 6px 13px;
}
table td {
border: 1px solid #dfe2e5;
margin: 0;
padding: 6px 13px;
}
table th:first-child,
table td:first-child {
margin-top: 0;
}
table th:last-child,
table td:last-child {
margin-bottom: 0;
}
.CodeMirror-lines {
padding-left: 4px;
}
.code-tooltip {
box-shadow: 0 1px 1px 0 rgba(0,28,36,.3);
border-top: 1px solid #eef2f2;
}
.md-fences,
code,
tt {
border: 1px solid #e7eaed;
background-color: #f8f8f8;
border-radius: 3px;
padding: 0;
padding: 2px 4px 0px 4px;
font-size: 0.9em;
}
code {
background-color: #f3f4f4;
padding: 0 2px 0 2px;
}
.md-fences {
margin-bottom: 15px;
margin-top: 15px;
padding-top: 8px;
padding-bottom: 6px;
}
.md-task-list-item > input {
margin-left: -1.3em;
}
@media print {
html {
font-size: 13px;
}
table,
pre {
page-break-inside: avoid;
}
pre {
word-wrap: break-word;
}
}
.md-fences {
background-color: #f8f8f8;
}
#write pre.md-meta-block {
padding: 1rem;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border: 0;
border-radius: 3px;
color: #777777;
margin-top: 0 !important;
}
.mathjax-block>.code-tooltip {
bottom: .375rem;
}
.md-mathjax-midline {
background: #fafafa;
}
#write>h3.md-focus:before{
left: -1.5625rem;
top: .375rem;
}
#write>h4.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
#write>h5.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
#write>h6.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
.md-image>.md-meta {
/*border: 1px solid #ddd;*/
border-radius: 3px;
padding: 2px 0px 0px 4px;
font-size: 0.9em;
color: inherit;
}
.md-tag {
color: #a7a7a7;
opacity: 1;
}
.md-toc {
margin-top:20px;
padding-bottom:20px;
}
.sidebar-tabs {
border-bottom: none;
}
#typora-quick-open {
border: 1px solid #ddd;
background-color: #f8f8f8;
}
#typora-quick-open-item {
background-color: #FAFAFA;
border-color: #FEFEFE #e5e5e5 #e5e5e5 #eee;
border-style: solid;
border-width: 1px;
}
/** focus mode */
.on-focus-mode blockquote {
border-left-color: rgba(85, 85, 85, 0.12);
}
header, .context-menu, .megamenu-content, footer{
font-family: "Segoe UI", "Arial", sans-serif;
}
.file-node-content:hover .file-node-icon,
.file-node-content:hover .file-node-open-state{
visibility: visible;
}
.mac-seamless-mode #typora-sidebar {
background-color: #fafafa;
background-color: var(--side-bar-bg-color);
}
.md-lang {
color: #b4654d;
}
/*.html-for-mac {
--item-hover-bg-color: #E6F0FE;
}*/
#md-notification .btn {
border: 0;
}
.dropdown-menu .divider {
border-color: #e5e5e5;
opacity: 0.4;
}
.ty-preferences .window-content {
background-color: #fafafa;
}
.ty-preferences .nav-group-item.active {
color: white;
background: #999;
}
.menu-item-container a.menu-style-btn {
background-color: #f5f8fa;
background-image: linear-gradient( 180deg , hsla(0, 0%, 100%, 0.8), hsla(0, 0%, 100%, 0));
}
</style><title>blog</title>
</head>
<body class='typora-export os-windows'><div class='typora-export-content'>
<div id='write' class=''><p> </p><h1 id='cost-volume-pyramid-based-depth-inference-for-multi-view-stereo'><strong><span>Cost Volume Pyramid Based Depth Inference for Multi-View Stereo</span></strong></h1><p><span>In this blog post, I will review the paper </span><a href='https://openaccess.thecvf.com/content_CVPR_2020/html/Yang_Cost_Volume_Pyramid_Based_Depth_Inference_for_Multi-View_Stereo_CVPR_2020_paper.html'><span>Cost Volume Pyramid Based Depth Inference for Multi-View Stereo</span></a><span> from Jiayu Yang et al. published in CVPR 2020. After introducing the topic and relevant background knowledge, I will explain the method in my own words. Then we will discuss the results and future works.</span></p><h1 id='introduction'><span>Introduction</span></h1><p><mark><span>Multi-view stereo (MVS) aims to reconstruct the 3D model of a scene from a set of images captured by a camera from multiple viewpoints.</span></mark><span> It is a fundamental problem for computer vision community and has application in 3D reconstruction and virtual reality. </span></p><p><img src="imgs/fig1.gif" referrerpolicy="no-referrer" alt="Multi-View Stereo"></p><p align="center">centered text</p><p><span>This paper addresses the MVS problem by depth inference, i.e. by inferring the depth map for an image using its neighboring images. The 3D point cloud of the scene can by built directly on the estimated depth map. We refer to the image in interest as the </span><strong><span>source image</span></strong><span> and its neighboring images as </span><strong><span>reference images</span></strong><span>. Another important thing to notice is that </span><mark><span>the camera poses(rotation, translation) and intrinsics of each viewpoint are </span><strong><span>known</span></strong></mark><span>. And here lies the different between MVS problem with SLAM or Structure from Motion, in which camera poses and 3D model of the scene are jointly estimated. </span></p><p><img src="imgs/fig2.PNG" alt="fig2" style="zoom:65%;" /></p><p align="center">Given the reference image and its neighboring source images, depth inference for MVS aims to infer the depth map for the refence image. </p><h2 id='background-knowledge'><span>Background knowledge</span></h2><p><span>Some background concepts need to be introduced before we dive into the paper. In this section, camera projection, epipolar line, photometric consistency and cost volume will be introduced and explained. The former three might be familiar with you if you have some experience in computer vision, while cost volume is a specific and relatively new concept.</span></p><h3 id='camera-projection'><span>Camera projection</span></h3><p><span>For a 3D point </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="9.303ex" height="2.577ex" viewBox="0 -806.1 4005.3 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E3-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E3-MJMATHI-58" d="M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z"></path><path stroke-width="0" id="E3-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E3-MJMATHI-59" d="M66 637Q54 637 49 637T39 638T32 641T30 647T33 664T42 682Q44 683 56 683Q104 680 165 680Q288 680 306 683H316Q322 677 322 674T320 656Q316 643 310 637H298Q242 637 242 624Q242 619 292 477T343 333L346 336Q350 340 358 349T379 373T411 410T454 461Q546 568 561 587T577 618Q577 634 545 637Q528 637 528 647Q528 649 530 661Q533 676 535 679T549 683Q551 683 578 682T657 680Q684 680 713 681T746 682Q763 682 763 673Q763 669 760 657T755 643Q753 637 734 637Q662 632 617 587Q608 578 477 424L348 273L322 169Q295 62 295 57Q295 46 363 46Q379 46 384 45T390 35Q390 33 388 23Q384 6 382 4T366 1Q361 1 324 1T232 2Q170 2 138 2T102 1Q84 1 84 9Q84 14 87 24Q88 27 89 30T90 35T91 39T93 42T96 44T101 45T107 45T116 46T129 46Q168 47 180 50T198 63Q201 68 227 171L252 274L129 623Q128 624 127 625T125 627T122 629T118 631T113 633T105 634T96 635T83 636T66 637Z"></path><path stroke-width="0" id="E3-MJMATHI-5A" d="M58 8Q58 23 64 35Q64 36 329 334T596 635L586 637Q575 637 512 637H500H476Q442 637 420 635T365 624T311 598T266 548T228 469Q227 466 226 463T224 458T223 453T222 450L221 448Q218 443 202 443Q185 443 182 453L214 561Q228 606 241 651Q249 679 253 681Q256 683 487 683H718Q723 678 723 675Q723 673 717 649Q189 54 188 52L185 49H274Q369 50 377 51Q452 60 500 100T579 247Q587 272 590 277T603 282H607Q628 282 628 271Q547 5 541 2Q538 0 300 0H124Q58 0 58 8Z"></path><path stroke-width="0" id="E3-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E3-MJMATHI-58" x="389" y="0"></use><use xlink:href="#E3-MJMAIN-2C" x="1241" y="0"></use><use xlink:href="#E3-MJMATHI-59" x="1685" y="0"></use><use xlink:href="#E3-MJMAIN-2C" x="2448" y="0"></use><use xlink:href="#E3-MJMATHI-5A" x="2893" y="0"></use><use xlink:href="#E3-MJMAIN-29" x="3616" y="0"></use></g></svg></span><script type="math/tex"> (X,Y,Z) </script><span> in world frame, its corresponding pixel position </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.295ex" height="2.577ex" viewBox="0 -806.1 2279.7 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E11-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E11-MJMATHI-75" d="M21 287Q21 295 30 318T55 370T99 420T158 442Q204 442 227 417T250 358Q250 340 216 246T182 105Q182 62 196 45T238 27T291 44T328 78L339 95Q341 99 377 247Q407 367 413 387T427 416Q444 431 463 431Q480 431 488 421T496 402L420 84Q419 79 419 68Q419 43 426 35T447 26Q469 29 482 57T512 145Q514 153 532 153Q551 153 551 144Q550 139 549 130T540 98T523 55T498 17T462 -8Q454 -10 438 -10Q372 -10 347 46Q345 45 336 36T318 21T296 6T267 -6T233 -11Q189 -11 155 7Q103 38 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E11-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E11-MJMATHI-76" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z"></path><path stroke-width="0" id="E11-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E11-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E11-MJMATHI-75" x="389" y="0"></use><use xlink:href="#E11-MJMAIN-2C" x="961" y="0"></use><use xlink:href="#E11-MJMATHI-76" x="1405" y="0"></use><use xlink:href="#E11-MJMAIN-29" x="1890" y="0"></use></g></svg></span><script type="math/tex"> (u,v)</script><span> on the image plane is given as follows:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n1704" cid="n1704" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-1448-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="34.657ex" height="3.052ex" viewBox="0 -997.6 14921.7 1314" role="img" focusable="false" style="vertical-align: -0.735ex; max-width: 100%;"><defs><path stroke-width="0" id="E1945-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E1945-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1945-MJMATHI-75" d="M21 287Q21 295 30 318T55 370T99 420T158 442Q204 442 227 417T250 358Q250 340 216 246T182 105Q182 62 196 45T238 27T291 44T328 78L339 95Q341 99 377 247Q407 367 413 387T427 416Q444 431 463 431Q480 431 488 421T496 402L420 84Q419 79 419 68Q419 43 426 35T447 26Q469 29 482 57T512 145Q514 153 532 153Q551 153 551 144Q550 139 549 130T540 98T523 55T498 17T462 -8Q454 -10 438 -10Q372 -10 347 46Q345 45 336 36T318 21T296 6T267 -6T233 -11Q189 -11 155 7Q103 38 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1945-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1945-MJMATHI-76" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z"></path><path stroke-width="0" id="E1945-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1945-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1945-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E1945-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1945-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path stroke-width="0" id="E1945-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E1945-MJMATHI-52" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path stroke-width="0" id="E1945-MJMAIN-7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z"></path><path stroke-width="0" id="E1945-MJMATHI-74" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path><path stroke-width="0" id="E1945-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E1945-MJMATHI-58" d="M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z"></path><path stroke-width="0" id="E1945-MJMATHI-59" d="M66 637Q54 637 49 637T39 638T32 641T30 647T33 664T42 682Q44 683 56 683Q104 680 165 680Q288 680 306 683H316Q322 677 322 674T320 656Q316 643 310 637H298Q242 637 242 624Q242 619 292 477T343 333L346 336Q350 340 358 349T379 373T411 410T454 461Q546 568 561 587T577 618Q577 634 545 637Q528 637 528 647Q528 649 530 661Q533 676 535 679T549 683Q551 683 578 682T657 680Q684 680 713 681T746 682Q763 682 763 673Q763 669 760 657T755 643Q753 637 734 637Q662 632 617 587Q608 578 477 424L348 273L322 169Q295 62 295 57Q295 46 363 46Q379 46 384 45T390 35Q390 33 388 23Q384 6 382 4T366 1Q361 1 324 1T232 2Q170 2 138 2T102 1Q84 1 84 9Q84 14 87 24Q88 27 89 30T90 35T91 39T93 42T96 44T101 45T107 45T116 46T129 46Q168 47 180 50T198 63Q201 68 227 171L252 274L129 623Q128 624 127 625T125 627T122 629T118 631T113 633T105 634T96 635T83 636T66 637Z"></path><path stroke-width="0" id="E1945-MJMATHI-5A" d="M58 8Q58 23 64 35Q64 36 329 334T596 635L586 637Q575 637 512 637H500H476Q442 637 420 635T365 624T311 598T266 548T228 469Q227 466 226 463T224 458T223 453T222 450L221 448Q218 443 202 443Q185 443 182 453L214 561Q228 606 241 651Q249 679 253 681Q256 683 487 683H718Q723 678 723 675Q723 673 717 649Q189 54 188 52L185 49H274Q369 50 377 51Q452 60 500 100T579 247Q587 272 590 277T603 282H607Q628 282 628 271Q547 5 541 2Q538 0 300 0H124Q58 0 58 8Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1945-MJMATHI-3BB" x="0" y="0"></use><use xlink:href="#E1945-MJMAIN-28" x="583" y="0"></use><use xlink:href="#E1945-MJMATHI-75" x="972" y="0"></use><use xlink:href="#E1945-MJMAIN-2C" x="1544" y="0"></use><use xlink:href="#E1945-MJMATHI-76" x="1988" y="0"></use><use xlink:href="#E1945-MJMAIN-2C" x="2473" y="0"></use><use xlink:href="#E1945-MJMAIN-31" x="2918" y="0"></use><g transform="translate(3418,0)"><use xlink:href="#E1945-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1945-MJMATHI-54" x="550" y="583"></use></g><use xlink:href="#E1945-MJMAIN-3D" x="4682" y="0"></use><use xlink:href="#E1945-MJMATHI-4B" x="5738" y="0"></use><use xlink:href="#E1945-MJMAIN-5B" x="6627" y="0"></use><use xlink:href="#E1945-MJMATHI-52" x="7103" y="0"></use><use xlink:href="#E1945-MJMAIN-7C" x="8060" y="0"></use><use xlink:href="#E1945-MJMATHI-74" x="8536" y="0"></use><use xlink:href="#E1945-MJMAIN-5D" x="9095" y="0"></use><use xlink:href="#E1945-MJMAIN-28" x="9373" y="0"></use><use xlink:href="#E1945-MJMATHI-58" x="9762" y="0"></use><use xlink:href="#E1945-MJMAIN-2C" x="10614" y="0"></use><use xlink:href="#E1945-MJMATHI-59" x="11059" y="0"></use><use xlink:href="#E1945-MJMAIN-2C" x="11822" y="0"></use><use xlink:href="#E1945-MJMATHI-5A" x="12267" y="0"></use><use xlink:href="#E1945-MJMAIN-2C" x="12990" y="0"></use><use xlink:href="#E1945-MJMAIN-31" x="13434" y="0"></use><g transform="translate(13934,0)"><use xlink:href="#E1945-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1945-MJMATHI-54" x="550" y="583"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-1448">\lambda (u,v,1)^T = K [\hspace{0.1cm}R \hspace{0.1cm}|\hspace{0.1cm} t\hspace{0.1cm}](X,Y,Z,1)^T</script></div></div><p><span>where </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.354ex" height="1.994ex" viewBox="0 -755.9 583 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E98-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E98-MJMATHI-3BB" x="0" y="0"></use></g></svg></span><script type="math/tex">\lambda</script><span> is the depth of the pixel, </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.065ex" height="1.877ex" viewBox="0 -755.9 889 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E105-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E105-MJMATHI-4B" x="0" y="0"></use></g></svg></span><script type="math/tex">K</script><span> is the camera intrinsic matrix, </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="10.841ex" height="2.577ex" viewBox="0 -806.1 4667.6 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E128-MJMATHI-52" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path stroke-width="0" id="E128-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E128-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path><path stroke-width="0" id="E128-MJMATHI-4F" d="M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z"></path><path stroke-width="0" id="E128-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E128-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E128-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E128-MJMATHI-52" x="0" y="0"></use><use xlink:href="#E128-MJMAIN-2208" x="1036" y="0"></use><use xlink:href="#E128-MJMATHI-53" x="1981" y="0"></use><use xlink:href="#E128-MJMATHI-4F" x="2626" y="0"></use><use xlink:href="#E128-MJMAIN-28" x="3389" y="0"></use><use xlink:href="#E128-MJMAIN-33" x="3778" y="0"></use><use xlink:href="#E128-MJMAIN-29" x="4278" y="0"></use></g></svg></span><script type="math/tex">R \in SO(3)</script><span> and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.838ex" height="1.877ex" viewBox="0 -705.6 361 808.1" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E110-MJMATHI-74" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E110-MJMATHI-74" x="0" y="0"></use></g></svg></span><script type="math/tex">t</script><span> are the extrinsics, i.e. the camera rotation and translation.</span></p><p><span>The rotation and translation transform the coordinates of the 3D point from world frame into camera frame, and the intrinsic matrix further transform the 3D point from camera frame into image plane. </span></p><p><img src="imgs/fig3.PNG" referrerpolicy="no-referrer" alt="camera projection"></p><p><span>Note that the preimage of a pixel on image plane will be a line in 3D space. If we want to transform a pixel on the image plane back to the world frame with no knowledge of the depth, the corresponding 3D point (a.k.a the preimage of the pixel) lies on a ray and we don't know where the point is without knowing the depth.</span></p><p><span>With the camera intrinsics and camera poses of each view, we can transform between different views and easily reproject the pixel into other views.</span></p><h3 id='epipolar-line'><span>Epipolar line</span></h3><p><span>If the depth of a pixel is unknown, the reprojection of a pixel of viewpoint 1 into viewpoint 2 lies on a line named epipolar line. This is straightforward since the preimage of the pixel in viewpoint 1 is a line in 3D space, and the projection of this 3D line into viewpoint 2 is also a line.</span></p><h3 id='photometric-consistency'><span>Photometric consistency</span></h3><p><span>Photometric consistency is a commonly used constraint in computer vision which assumes that </span><strong><span>the same 3D point projected into different viewpoints should be of similar color</span></strong><span>. For large lighting changes or non-lambertian surfaces, this constraint might not hold true. But in general, photometric consistency holds for most pixels in the image.</span>
<span>With photometric consistency, the depth of the pixel could be estimated by minimizing the reprojection error.</span>
<img src="imgs/fig4.PNG" alt="fig4" style="zoom:80%;"/>
<span>For example, in the above figure, we want to fine the reprojection of the blue pixel in the right view. The depth of the blue pixel is unknown, so we assume four depth hypotheses. Each depth hypothesis gives a possible reprojection of the blue pixel in the right view. For each depth hypothesis, we compute the reprojection error (the difference between the original pixel value and the reprojected pixel value). The best depth hypothesis is chosen as the one which gives the smallest reprojection error. We can sample more depth hypotheses and get a more accurate depth estimation.</span></p><p><img src="imgs/fig5.PNG" alt="fig5" style="zoom:80%;" /></p><p align="center"> Of the four depth hypotheses, the green one results in the smallest reprojection error and will be chosen. </p><h3 id='cost-volume'><span>Cost volume</span></h3><p><span>Cost volume is the specific background knowledge of this paper and you will only know it if you read some papers about MVS.</span></p><p><img src="imgs/fig6.gif" referrerpolicy="no-referrer" alt="fig6"></p><p align="center"> The construction of cost volume </p><p><span>Suppose we have two source views, as shown above. Recall that reference view is the view in interest and we want to estimate its depth map; and source views are neighboring views of the reference view. The image dimension is </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="7.336ex" height="1.994ex" viewBox="0 -755.9 3158.4 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E150-MJMATHI-48" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E150-MJMAIN-D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z"></path><path stroke-width="0" id="E150-MJMATHI-57" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E150-MJMATHI-48" x="0" y="0"></use><use xlink:href="#E150-MJMAIN-D7" x="1110" y="0"></use><use xlink:href="#E150-MJMATHI-57" x="2110" y="0"></use></g></svg></span><script type="math/tex">H \times W</script><span>. For each pixel in the reference view, we sample </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.441ex" height="1.877ex" viewBox="0 -755.9 1051 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E154-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E154-MJMATHI-4D" x="0" y="0"></use></g></svg></span><script type="math/tex">M</script><span> (4 in the above figure) depth hypotheses (e.g. uniformly sampling) in the depth range. Then each depth hypothesis is projected to the source views. For each depth hypothesis, we compute the variance of features across all three views, and the resulted variance is one voxel in the cost volume. Repeating the above process for all pixels in the reference view and all depth hypotheses, we will have a cost volume of size </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="12.616ex" height="1.994ex" viewBox="0 -755.9 5431.9 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E192-MJMATHI-48" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E192-MJMAIN-D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z"></path><path stroke-width="0" id="E192-MJMATHI-57" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path stroke-width="0" id="E192-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E192-MJMATHI-48" x="0" y="0"></use><use xlink:href="#E192-MJMAIN-D7" x="1110" y="0"></use><use xlink:href="#E192-MJMATHI-57" x="2110" y="0"></use><use xlink:href="#E192-MJMAIN-D7" x="3380" y="0"></use><use xlink:href="#E192-MJMATHI-4D" x="4380" y="0"></use></g></svg></span><script type="math/tex">H \times W \times M</script><span>. According to photometric consistency, a small variance indicates a relatively accurate depth hypothesis. The variance is a cost metric for the depth hypothesis, hence the name cost volume.</span></p><p><span>Mathematically, given a reference view </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="11.281ex" height="2.811ex" viewBox="0 -956.9 4857.2 1210.2" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E363-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E363-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E363-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E363-MJAMS-52" d="M17 665Q17 672 28 683H221Q415 681 439 677Q461 673 481 667T516 654T544 639T566 623T584 607T597 592T607 578T614 565T618 554L621 548Q626 530 626 497Q626 447 613 419Q578 348 473 326L455 321Q462 310 473 292T517 226T578 141T637 72T686 35Q705 30 705 16Q705 7 693 -1H510Q503 6 404 159L306 310H268V183Q270 67 271 59Q274 42 291 38Q295 37 319 35Q344 35 353 28Q362 17 353 3L346 -1H28Q16 5 16 16Q16 35 55 35Q96 38 101 52Q106 60 106 341T101 632Q95 645 55 648Q17 648 17 665ZM241 35Q238 42 237 45T235 78T233 163T233 337V621L237 635L244 648H133Q136 641 137 638T139 603T141 517T141 341Q141 131 140 89T134 37Q133 36 133 35H241ZM457 496Q457 540 449 570T425 615T400 634T377 643Q374 643 339 648Q300 648 281 635Q271 628 270 610T268 481V346H284Q327 346 375 352Q421 364 439 392T457 496ZM492 537T492 496T488 427T478 389T469 371T464 361Q464 360 465 360Q469 360 497 370Q593 400 593 495Q593 592 477 630L457 637L461 626Q474 611 488 561Q492 537 492 496ZM464 243Q411 317 410 317Q404 317 401 315Q384 315 370 312H346L526 35H619L606 50Q553 109 464 243Z"></path><path stroke-width="0" id="E363-MJMATHI-48" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E363-MJMAIN-D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z"></path><path stroke-width="0" id="E363-MJMATHI-57" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E363-MJMATHI-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E363-MJMAIN-30" x="622" y="-213"></use><use xlink:href="#E363-MJMAIN-2208" x="1171" y="0"></use><g transform="translate(2116,0)"><use xlink:href="#E363-MJAMS-52" x="0" y="0"></use><g transform="translate(722,409)"><use transform="scale(0.707)" xlink:href="#E363-MJMATHI-48" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E363-MJMAIN-D7" x="888" y="0"></use><use transform="scale(0.707)" xlink:href="#E363-MJMATHI-57" x="1666" y="0"></use></g></g></g></svg></span><script type="math/tex">I_0 \in \R ^{H \times W}</script><span> and its </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.062ex" height="1.877ex" viewBox="0 -755.9 888 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E303-MJMATHI-4E" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E303-MJMATHI-4E" x="0" y="0"></use></g></svg></span><script type="math/tex">N</script><span> neighboring source views </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="7.041ex" height="3.044ex" viewBox="0 -906.7 3031.6 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E1524-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E1524-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E1524-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1524-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path><path stroke-width="0" id="E1524-MJMATHI-4E" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path stroke-width="0" id="E1524-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1524-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1524-MJMAIN-7B" x="0" y="0"></use><g transform="translate(500,0)"><use xlink:href="#E1524-MJMATHI-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1524-MJMATHI-69" x="622" y="-213"></use></g><g transform="translate(1283,0)"><use xlink:href="#E1524-MJMAIN-7D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1524-MJMATHI-4E" x="707" y="487"></use><g transform="translate(500,-307)"><use transform="scale(0.707)" xlink:href="#E1524-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1524-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E1524-MJMAIN-31" x="1123" y="0"></use></g></g></g></svg></span><script type="math/tex">\{I_i\}_{i=1}^{N}</script><span>. Let </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="14.256ex" height="3.044ex" viewBox="0 -906.7 6137.8 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E393-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E393-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path stroke-width="0" id="E393-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E393-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E393-MJMATHI-52" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path stroke-width="0" id="E393-MJMATHI-74" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path><path stroke-width="0" id="E393-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path><path stroke-width="0" id="E393-MJMATHI-4E" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path stroke-width="0" id="E393-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E393-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E393-MJMAIN-7B" x="0" y="0"></use><g transform="translate(500,0)"><use xlink:href="#E393-MJMATHI-4B" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-69" x="1200" y="-213"></use></g><use xlink:href="#E393-MJMAIN-2C" x="1692" y="0"></use><g transform="translate(2137,0)"><use xlink:href="#E393-MJMATHI-52" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-69" x="1073" y="-213"></use></g><use xlink:href="#E393-MJMAIN-2C" x="3240" y="0"></use><g transform="translate(3685,0)"><use xlink:href="#E393-MJMATHI-74" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-69" x="510" y="-213"></use></g><g transform="translate(4390,0)"><use xlink:href="#E393-MJMAIN-7D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-4E" x="707" y="487"></use><g transform="translate(500,-307)"><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-30" x="1123" y="0"></use></g></g></g></svg></span><script type="math/tex">\{K_i,R_i, t_i\}^N_{i
=0}</script><span> denote the corresponding camera intrinsics, rotation matrix, and translation vector for all views. The depth range is between </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.434ex" height="2.344ex" viewBox="0 -755.9 1909.1 1009.2" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E442-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E442-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E442-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E442-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E442-MJMATHI-64" x="0" y="0"></use><g transform="translate(520,-150)"><use transform="scale(0.707)" xlink:href="#E442-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E442-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E442-MJMATHI-6E" x="1223" y="0"></use></g></g></svg></span><script type="math/tex">d_{min}</script><span> and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.69ex" height="2.344ex" viewBox="0 -755.9 2019.4 1009.2" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E453-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E453-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E453-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E453-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E453-MJMATHI-64" x="0" y="0"></use><g transform="translate(520,-150)"><use transform="scale(0.707)" xlink:href="#E453-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E453-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E453-MJMATHI-78" x="1406" y="0"></use></g></g></svg></span><script type="math/tex">d_{max}</script><span> and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.441ex" height="1.877ex" viewBox="0 -755.9 1051 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E154-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E154-MJMATHI-4D" x="0" y="0"></use></g></svg></span><script type="math/tex">M</script><span> depth hypotheses are sampled uniformly in the depth range. For pixel </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="11.039ex" height="2.811ex" viewBox="-39 -906.7 4753 1210.2" role="img" focusable="false" style="vertical-align: -0.705ex; margin-left: -0.091ex;"><defs><path stroke-width="0" id="E413-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E413-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E413-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E413-MJMATHI-75" d="M21 287Q21 295 30 318T55 370T99 420T158 442Q204 442 227 417T250 358Q250 340 216 246T182 105Q182 62 196 45T238 27T291 44T328 78L339 95Q341 99 377 247Q407 367 413 387T427 416Q444 431 463 431Q480 431 488 421T496 402L420 84Q419 79 419 68Q419 43 426 35T447 26Q469 29 482 57T512 145Q514 153 532 153Q551 153 551 144Q550 139 549 130T540 98T523 55T498 17T462 -8Q454 -10 438 -10Q372 -10 347 46Q345 45 336 36T318 21T296 6T267 -6T233 -11Q189 -11 155 7Q103 38 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E413-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E413-MJMATHI-76" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z"></path><path stroke-width="0" id="E413-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E413-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E413-MJMATHI-70" x="0" y="0"></use><use xlink:href="#E413-MJMAIN-3D" x="780" y="0"></use><use xlink:href="#E413-MJMAIN-28" x="1836" y="0"></use><use xlink:href="#E413-MJMATHI-75" x="2225" y="0"></use><use xlink:href="#E413-MJMAIN-2C" x="2797" y="0"></use><use xlink:href="#E413-MJMATHI-76" x="3242" y="0"></use><g transform="translate(3727,0)"><use xlink:href="#E413-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E413-MJMATHI-54" x="550" y="513"></use></g></g></svg></span><script type="math/tex">p=(u,v)^T</script><span> in reference view and the </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.039ex" height="1.41ex" viewBox="0 -504.6 878 607.1" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E415-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E415-MJMATHI-6D" x="0" y="0"></use></g></svg></span><script type="math/tex">m</script><span>-th depth hypothesis, the cost volume value is given by:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n1722" cid="n1722" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-1449-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="47.753ex" height="7.19ex" viewBox="0 -1836 20560.4 3095.6" role="img" focusable="false" style="vertical-align: -2.926ex; max-width: 100%;"><defs><path stroke-width="0" id="E1946-MJMATHI-43" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q484 659 454 652T382 628T299 572T226 479Q194 422 175 346T156 222Q156 108 232 58Q280 24 350 24Q441 24 512 92T606 240Q610 253 612 255T628 257Q648 257 648 248Q648 243 647 239Q618 132 523 55T319 -22Q206 -22 128 53T50 252Z"></path><path stroke-width="0" id="E1946-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1946-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1946-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1946-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1946-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1946-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1946-MJMATHI-4E" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path stroke-width="0" id="E1946-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E1946-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E1946-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1946-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E1946-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E1946-MJMAIN-3A0" d="M128 619Q121 626 117 628T101 631T58 634H25V680H724V634H691Q651 633 640 631T622 619V61Q628 51 639 49T691 46H724V0H713Q692 3 569 3Q434 3 425 0H414V46H447Q489 47 498 49T517 61V634H232V348L233 61Q239 51 250 49T302 46H335V0H324Q303 3 180 3Q45 3 36 0H25V46H58Q100 47 109 49T128 61V619Z"></path><path stroke-width="0" id="E1946-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1946-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E1946-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E1946-MJMAIN-AF" d="M69 544V590H430V544H69Z"></path><path stroke-width="0" id="E1946-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1946-MJMATHI-43" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1946-MJMATHI-6D" x="1011" y="-213"></use><use xlink:href="#E1946-MJMAIN-28" x="1435" y="0"></use><use xlink:href="#E1946-MJMATHI-70" x="1824" y="0"></use><use xlink:href="#E1946-MJMAIN-29" x="2327" y="0"></use><use xlink:href="#E1946-MJMAIN-3D" x="2994" y="0"></use><g transform="translate(3772,0)"><g transform="translate(397,0)"><rect stroke="none" width="2730" height="60" x="0" y="220"></rect><use xlink:href="#E1946-MJMAIN-31" x="1115" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E1946-MJMATHI-4E" x="0" y="0"></use><use xlink:href="#E1946-MJMAIN-2B" x="1110" y="0"></use><use xlink:href="#E1946-MJMAIN-31" x="2110" y="0"></use></g></g></g><g transform="translate(7187,0)"><use xlink:href="#E1946-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E1946-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1946-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E1946-MJMAIN-30" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E1946-MJMATHI-4E" x="577" y="1626"></use></g><use xlink:href="#E1946-MJMAIN-28" x="8631" y="0"></use><g transform="translate(9020,0)"><use xlink:href="#E1946-MJMATHI-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1946-MJMATHI-69" x="622" y="-213"></use></g><use xlink:href="#E1946-MJMAIN-28" x="9804" y="0"></use><use xlink:href="#E1946-MJMAIN-3A0" x="10193" y="0"></use><use xlink:href="#E1946-MJMAIN-28" x="10943" y="0"></use><use xlink:href="#E1946-MJMATHI-70" x="11332" y="0"></use><use xlink:href="#E1946-MJMAIN-2C" x="11835" y="0"></use><use xlink:href="#E1946-MJMATHI-64" x="12280" y="0"></use><use xlink:href="#E1946-MJMAIN-28" x="12803" y="0"></use><use xlink:href="#E1946-MJMATHI-6D" x="13192" y="0"></use><use xlink:href="#E1946-MJMAIN-29" x="14070" y="0"></use><use xlink:href="#E1946-MJMAIN-29" x="14459" y="0"></use><use xlink:href="#E1946-MJMAIN-29" x="14848" y="0"></use><use xlink:href="#E1946-MJMAIN-2212" x="15459" y="0"></use><g transform="translate(16459,0)"><use xlink:href="#E1946-MJMATHI-49" x="0" y="0"></use><use xlink:href="#E1946-MJMAIN-AF" x="154" y="217"></use></g><use xlink:href="#E1946-MJMAIN-28" x="17114" y="0"></use><use xlink:href="#E1946-MJMATHI-70" x="17503" y="0"></use><use xlink:href="#E1946-MJMAIN-2C" x="18006" y="0"></use><use xlink:href="#E1946-MJMATHI-6D" x="18450" y="0"></use><use xlink:href="#E1946-MJMAIN-29" x="19328" y="0"></use><g transform="translate(19717,0)"><use xlink:href="#E1946-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1946-MJMAIN-32" x="550" y="583"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-1449">C_m(p) = \frac{1}{N+1}\sum_{i=0}^{N} (I_i(\Pi(p,d(m)))-\bar{I}(p,m))^2</script></div></div><p><span>where</span></p><p><span> </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="34.843ex" height="2.577ex" viewBox="0 -806.1 15001.9 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E737-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E737-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E737-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E737-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E737-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E737-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E737-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E737-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E737-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E737-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E737-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E737-MJMAIN-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path stroke-width="0" id="E737-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E737-MJMATHI-64" x="0" y="0"></use><use xlink:href="#E737-MJMAIN-28" x="523" y="0"></use><use xlink:href="#E737-MJMATHI-6D" x="912" y="0"></use><use xlink:href="#E737-MJMAIN-29" x="1790" y="0"></use><use xlink:href="#E737-MJMAIN-3D" x="2456" y="0"></use><g transform="translate(3512,0)"><use xlink:href="#E737-MJMATHI-64" x="0" y="0"></use><g transform="translate(520,-150)"><use transform="scale(0.707)" xlink:href="#E737-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E737-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E737-MJMATHI-6E" x="1223" y="0"></use></g></g><use xlink:href="#E737-MJMAIN-2B" x="5643" y="0"></use><use xlink:href="#E737-MJMATHI-6D" x="6644" y="0"></use><use xlink:href="#E737-MJMAIN-28" x="7522" y="0"></use><g transform="translate(7911,0)"><use xlink:href="#E737-MJMATHI-64" x="0" y="0"></use><g transform="translate(520,-150)"><use transform="scale(0.707)" xlink:href="#E737-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E737-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E737-MJMATHI-78" x="1406" y="0"></use></g></g><use xlink:href="#E737-MJMAIN-2212" x="10152" y="0"></use><g transform="translate(11152,0)"><use xlink:href="#E737-MJMATHI-64" x="0" y="0"></use><g transform="translate(520,-150)"><use transform="scale(0.707)" xlink:href="#E737-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E737-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E737-MJMATHI-6E" x="1223" y="0"></use></g></g><use xlink:href="#E737-MJMAIN-29" x="13061" y="0"></use><use xlink:href="#E737-MJMAIN-2F" x="13450" y="0"></use><use xlink:href="#E737-MJMATHI-4D" x="13950" y="0"></use></g></svg></span><script type="math/tex">d(m)=d_{min}+m(d_{max}-d_{min})/M</script><span>, </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="24.356ex" height="2.577ex" viewBox="0 -806.1 10486.7 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E773-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E773-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E773-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E773-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E773-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E773-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E773-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E773-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E773-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path stroke-width="0" id="E773-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E773-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E773-MJMATHI-6D" x="0" y="0"></use><use xlink:href="#E773-MJMAIN-2208" x="1155" y="0"></use><use xlink:href="#E773-MJMAIN-7B" x="2100" y="0"></use><use xlink:href="#E773-MJMAIN-30" x="2600" y="0"></use><use xlink:href="#E773-MJMAIN-2C" x="3100" y="0"></use><use xlink:href="#E773-MJMAIN-31" x="3545" y="0"></use><use xlink:href="#E773-MJMAIN-2C" x="4045" y="0"></use><use xlink:href="#E773-MJMAIN-32" x="4489" y="0"></use><use xlink:href="#E773-MJMAIN-2C" x="4989" y="0"></use><use xlink:href="#E773-MJMAIN-2E" x="5434" y="0"></use><use xlink:href="#E773-MJMAIN-2E" x="5879" y="0"></use><use xlink:href="#E773-MJMAIN-2E" x="6323" y="0"></use><use xlink:href="#E773-MJMAIN-2C" x="6768" y="0"></use><use xlink:href="#E773-MJMATHI-4D" x="7213" y="0"></use><use xlink:href="#E773-MJMAIN-2212" x="8486" y="0"></use><use xlink:href="#E773-MJMAIN-31" x="9486" y="0"></use><use xlink:href="#E773-MJMAIN-7D" x="9986" y="0"></use></g></svg></span><script type="math/tex">m \in \{0,1,2,...,M-1\}</script><span>; </span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.742ex" height="1.877ex" viewBox="0 -755.9 750 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E474-MJMAIN-3A0" d="M128 619Q121 626 117 628T101 631T58 634H25V680H724V634H691Q651 633 640 631T622 619V61Q628 51 639 49T691 46H724V0H713Q692 3 569 3Q434 3 425 0H414V46H447Q489 47 498 49T517 61V634H232V348L233 61Q239 51 250 49T302 46H335V0H324Q303 3 180 3Q45 3 36 0H25V46H58Q100 47 109 49T128 61V619Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E474-MJMAIN-3A0" x="0" y="0"></use></g></svg></span><script type="math/tex">\Pi</script><span> is the warping function: </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="29.968ex" height="2.811ex" viewBox="0 -906.7 12902.9 1210.2" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E1500-MJMAIN-3A0" d="M128 619Q121 626 117 628T101 631T58 634H25V680H724V634H691Q651 633 640 631T622 619V61Q628 51 639 49T691 46H724V0H713Q692 3 569 3Q434 3 425 0H414V46H447Q489 47 498 49T517 61V634H232V348L233 61Q239 51 250 49T302 46H335V0H324Q303 3 180 3Q45 3 36 0H25V46H58Q100 47 109 49T128 61V619Z"></path><path stroke-width="0" id="E1500-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1500-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1500-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1500-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E1500-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1500-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1500-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1500-MJMATHI-3C0" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path stroke-width="0" id="E1500-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1500-MJMAIN-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path stroke-width="0" id="E1500-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E1500-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E1500-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1500-MJMAIN-3A0" x="0" y="0"></use><use xlink:href="#E1500-MJMAIN-28" x="750" y="0"></use><use xlink:href="#E1500-MJMATHI-70" x="1139" y="0"></use><use xlink:href="#E1500-MJMAIN-2C" x="1642" y="0"></use><use xlink:href="#E1500-MJMATHI-64" x="2086" y="0"></use><use xlink:href="#E1500-MJMAIN-28" x="2609" y="0"></use><use xlink:href="#E1500-MJMATHI-6D" x="2998" y="0"></use><use xlink:href="#E1500-MJMAIN-29" x="3876" y="0"></use><use xlink:href="#E1500-MJMAIN-29" x="4265" y="0"></use><use xlink:href="#E1500-MJMAIN-3D" x="4932" y="0"></use><use xlink:href="#E1500-MJMAIN-28" x="5988" y="0"></use><g transform="translate(6377,0)"><use xlink:href="#E1500-MJMATHI-3C0" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1500-MJMAIN-31" x="806" y="-213"></use></g><use xlink:href="#E1500-MJMAIN-2F" x="7400" y="0"></use><g transform="translate(7900,0)"><use xlink:href="#E1500-MJMATHI-3C0" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1500-MJMAIN-33" x="806" y="-213"></use></g><use xlink:href="#E1500-MJMAIN-2C" x="8924" y="0"></use><g transform="translate(9368,0)"><use xlink:href="#E1500-MJMATHI-3C0" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1500-MJMAIN-32" x="806" y="-213"></use></g><use xlink:href="#E1500-MJMAIN-2F" x="10392" y="0"></use><g transform="translate(10892,0)"><use xlink:href="#E1500-MJMATHI-3C0" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1500-MJMAIN-33" x="806" y="-213"></use></g><g transform="translate(11916,0)"><use xlink:href="#E1500-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1500-MJMATHI-54" x="550" y="513"></use></g></g></svg></span><script type="math/tex">\Pi(p,d(m)) = (\pi_1/\pi_3, \pi_2/\pi_3)^T</script><span> and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="45.038ex" height="3.161ex" viewBox="0 -956.9 19391.4 1361" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E1535-MJMATHI-3C0" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path stroke-width="0" id="E1535-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1535-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path stroke-width="0" id="E1535-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1535-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1535-MJMATHI-52" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path stroke-width="0" id="E1535-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E1535-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1535-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E1535-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E1535-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1535-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1535-MJMATHI-75" d="M21 287Q21 295 30 318T55 370T99 420T158 442Q204 442 227 417T250 358Q250 340 216 246T182 105Q182 62 196 45T238 27T291 44T328 78L339 95Q341 99 377 247Q407 367 413 387T427 416Q444 431 463 431Q480 431 488 421T496 402L420 84Q419 79 419 68Q419 43 426 35T447 26Q469 29 482 57T512 145Q514 153 532 153Q551 153 551 144Q550 139 549 130T540 98T523 55T498 17T462 -8Q454 -10 438 -10Q372 -10 347 46Q345 45 336 36T318 21T296 6T267 -6T233 -11Q189 -11 155 7Q103 38 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1535-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1535-MJMATHI-76" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z"></path><path stroke-width="0" id="E1535-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E1535-MJMATHI-74" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path><path stroke-width="0" id="E1535-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1535-MJMATHI-3C0" x="0" y="0"></use><use xlink:href="#E1535-MJMAIN-3D" x="850" y="0"></use><g transform="translate(1906,0)"><use xlink:href="#E1535-MJMATHI-4B" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1535-MJMATHI-69" x="1200" y="-213"></use></g><use xlink:href="#E1535-MJMAIN-28" x="3099" y="0"></use><g transform="translate(3488,0)"><use xlink:href="#E1535-MJMATHI-52" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1535-MJMATHI-69" x="1073" y="-213"></use></g><g transform="translate(4591,0)"><use xlink:href="#E1535-MJMATHI-52" x="0" y="0"></use><g transform="translate(759,402)"><use transform="scale(0.707)" xlink:href="#E1535-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1535-MJMAIN-31" x="778" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E1535-MJMAIN-30" x="1073" y="-434"></use></g><use xlink:href="#E1535-MJMAIN-28" x="6354" y="0"></use><g transform="translate(6743,0)"><use xlink:href="#E1535-MJMATHI-4B" x="0" y="0"></use><g transform="translate(901,402)"><use transform="scale(0.707)" xlink:href="#E1535-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1535-MJMAIN-31" x="778" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E1535-MJMAIN-30" x="1200" y="-434"></use></g><use xlink:href="#E1535-MJMATHI-64" x="8647" y="0"></use><use xlink:href="#E1535-MJMAIN-28" x="9170" y="0"></use><use xlink:href="#E1535-MJMATHI-6D" x="9559" y="0"></use><use xlink:href="#E1535-MJMAIN-29" x="10437" y="0"></use><use xlink:href="#E1535-MJMAIN-28" x="10826" y="0"></use><use xlink:href="#E1535-MJMATHI-75" x="11215" y="0"></use><use xlink:href="#E1535-MJMAIN-2C" x="11787" y="0"></use><use xlink:href="#E1535-MJMATHI-76" x="12232" y="0"></use><use xlink:href="#E1535-MJMAIN-2C" x="12717" y="0"></use><use xlink:href="#E1535-MJMAIN-31" x="13162" y="0"></use><g transform="translate(13662,0)"><use xlink:href="#E1535-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1535-MJMATHI-54" x="550" y="513"></use></g><use xlink:href="#E1535-MJMAIN-2212" x="14871" y="0"></use><g transform="translate(15871,0)"><use xlink:href="#E1535-MJMATHI-74" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1535-MJMAIN-30" x="510" y="-213"></use></g><use xlink:href="#E1535-MJMAIN-29" x="16686" y="0"></use><use xlink:href="#E1535-MJMAIN-2B" x="17297" y="0"></use><g transform="translate(18297,0)"><use xlink:href="#E1535-MJMATHI-74" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1535-MJMATHI-69" x="510" y="-213"></use></g><use xlink:href="#E1535-MJMAIN-29" x="19002" y="0"></use></g></svg></span><script type="math/tex">\pi = K_i(R_iR_0^{-1}(K_0^{-1}d(m)(u,v,1)^T-t_0)+t_i)</script><span>;</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="7.568ex" height="2.811ex" viewBox="0 -906.7 3258.3 1210.2" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E1263-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E1263-MJMAIN-AF" d="M69 544V590H430V544H69Z"></path><path stroke-width="0" id="E1263-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1263-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1263-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1263-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1263-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1263-MJMATHI-49" x="0" y="0"></use><use xlink:href="#E1263-MJMAIN-AF" x="154" y="214"></use><use xlink:href="#E1263-MJMAIN-28" x="654" y="0"></use><use xlink:href="#E1263-MJMATHI-70" x="1043" y="0"></use><use xlink:href="#E1263-MJMAIN-2C" x="1546" y="0"></use><use xlink:href="#E1263-MJMATHI-6D" x="1991" y="0"></use><use xlink:href="#E1263-MJMAIN-29" x="2869" y="0"></use></g></svg></span><script type="math/tex">\bar{I}(p,m)</script><span> is the mean value of features: </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="35.622ex" height="3.628ex" viewBox="0 -1057.4 15337 1562" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E1543-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E1543-MJMAIN-7E" d="M179 251Q164 251 151 245T131 234T111 215L97 227L83 238Q83 239 95 253T121 283T142 304Q165 318 187 318T253 300T320 282Q335 282 348 288T368 299T388 318L402 306L416 295Q375 236 344 222Q330 215 313 215Q292 215 248 233T179 251Z"></path><path stroke-width="0" id="E1543-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1543-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1543-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1543-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1543-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1543-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1543-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1543-MJMATHI-4E" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path stroke-width="0" id="E1543-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E1543-MJSZ1-2211" d="M61 748Q64 750 489 750H913L954 640Q965 609 976 579T993 533T999 516H979L959 517Q936 579 886 621T777 682Q724 700 655 705T436 710H319Q183 710 183 709Q186 706 348 484T511 259Q517 250 513 244L490 216Q466 188 420 134T330 27L149 -187Q149 -188 362 -188Q388 -188 436 -188T506 -189Q679 -189 778 -162T936 -43Q946 -27 959 6H999L913 -249L489 -250Q65 -250 62 -248Q56 -246 56 -239Q56 -234 118 -161Q186 -81 245 -11L428 206Q428 207 242 462L57 717L56 728Q56 744 61 748Z"></path><path stroke-width="0" id="E1543-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1543-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E1543-MJMAIN-3A0" d="M128 619Q121 626 117 628T101 631T58 634H25V680H724V634H691Q651 633 640 631T622 619V61Q628 51 639 49T691 46H724V0H713Q692 3 569 3Q434 3 425 0H414V46H447Q489 47 498 49T517 61V634H232V348L233 61Q239 51 250 49T302 46H335V0H324Q303 3 180 3Q45 3 36 0H25V46H58Q100 47 109 49T128 61V619Z"></path><path stroke-width="0" id="E1543-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1543-MJMATHI-49" x="0" y="0"></use><use xlink:href="#E1543-MJMAIN-7E" x="154" y="543"></use><use xlink:href="#E1543-MJMAIN-28" x="654" y="0"></use><use xlink:href="#E1543-MJMATHI-70" x="1043" y="0"></use><use xlink:href="#E1543-MJMAIN-2C" x="1546" y="0"></use><use xlink:href="#E1543-MJMATHI-6D" x="1991" y="0"></use><use xlink:href="#E1543-MJMAIN-29" x="2869" y="0"></use><use xlink:href="#E1543-MJMAIN-3D" x="3536" y="0"></use><g transform="translate(4314,0)"><g transform="translate(397,0)"><rect stroke="none" width="1651" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E1543-MJMAIN-31" x="917" y="571"></use><g transform="translate(60,-388)"><use transform="scale(0.707)" xlink:href="#E1543-MJMATHI-4E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1543-MJMAIN-2B" x="888" y="0"></use><use transform="scale(0.707)" xlink:href="#E1543-MJMAIN-31" x="1666" y="0"></use></g></g></g><g transform="translate(6650,0)"><use xlink:href="#E1543-MJSZ1-2211" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1543-MJMATHI-4E" x="1493" y="674"></use><g transform="translate(1056,-286)"><use transform="scale(0.707)" xlink:href="#E1543-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1543-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E1543-MJMAIN-30" x="1123" y="0"></use></g></g><g transform="translate(9120,0)"><use xlink:href="#E1543-MJMATHI-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1543-MJMATHI-69" x="622" y="-213"></use></g><use xlink:href="#E1543-MJMAIN-28" x="9904" y="0"></use><use xlink:href="#E1543-MJMAIN-3A0" x="10293" y="0"></use><use xlink:href="#E1543-MJMAIN-28" x="11043" y="0"></use><use xlink:href="#E1543-MJMATHI-70" x="11432" y="0"></use><use xlink:href="#E1543-MJMAIN-2C" x="11935" y="0"></use><use xlink:href="#E1543-MJMATHI-64" x="12380" y="0"></use><use xlink:href="#E1543-MJMAIN-28" x="12903" y="0"></use><use xlink:href="#E1543-MJMATHI-6D" x="13292" y="0"></use><use xlink:href="#E1543-MJMAIN-29" x="14170" y="0"></use><use xlink:href="#E1543-MJMAIN-29" x="14559" y="0"></use><use xlink:href="#E1543-MJMAIN-29" x="14948" y="0"></use></g></svg></span><script type="math/tex">\tilde{I}(p,m) = \frac{1}{N+1}\sum_{i=0}^{N} I_i(\Pi(p,d(m)))</script></p><h1 id='related-work'><span>Related work</span></h1><p><span>While </span><a href='http://szeliski.org/papers/Seitz-CVPR06.pdf'><span>traditional methods</span></a><span> before deep learning era have great achievements on the reconstruction of a scene with Lambertian surfaces, they still suffer from illumination changes, low-texture regions, and reflections resulting in unreliable matching correspondences for further reconstruction. </span></p><p><span>Recent learning-based approaches adopt deepCNNs to infer the depth map for each view followed by a separate multiple-view fusion process for building 3D models. These methods allow the network to extract discriminative features encoding global and local information of a scene to obtain robust feature matching for MVS. </span></p><p><span>In particular, Yao </span><em><span>et al.</span></em><span> propose </span><a href='https://openaccess.thecvf.com/content_ECCV_2018/html/Yao_Yao_MVSNet_Depth_Inference_ECCV_2018_paper.html'><span>MVSNet</span></a><span> to infer a depth map for each view. An essential step in MVSNet is to build a cost volume based on a plane sweep process followed by multiscale 3D CNNs for regularization. While effective in depth inference accuracy, its memory requirement is cubic to the image resolution. To allow handling high resolution images, they then adopt a recurrent cost volume regularization process (</span><a href='https://openaccess.thecvf.com/content_CVPR_2019/html/Yao_Recurrent_MVSNet_for_High-Resolution_Multi-View_Stereo_Depth_Inference_CVPR_2019_paper.html'><span>R-MVSNet</span></a><span>). However, the reduction in memory requirements involves a longer run-time.</span></p><figure><table><thead><tr><th style='text-align:center;' ><img src="imgs/fig7.PNG" referrerpolicy="no-referrer" alt="fig7"></th><th style='text-align:center;' ><img src="imgs/fig8.gif" referrerpolicy="no-referrer" alt="fig8"></th></tr></thead><tbody><tr><td style='text-align:center;' ><span>MVSNet (Yao </span><em><span>et al.</span></em><span> 2018)</span></td><td style='text-align:center;' ><span>R-MVSNet (Yao </span><em><span>et al.</span></em><span> 2019)</span></td></tr></tbody></table></figure><p><span>In order to achieve a computationally efficient network, </span><a href='https://openaccess.thecvf.com/content_ICCV_2019/html/Chen_Point-Based_Multi-View_Stereo_Network_ICCV_2019_paper.html'><span>Point-MVSNet(Chen </span><em><span>et al.</span></em><span> 2019)</span></a><span> works on 3D point clouds to iteratively predict the depth residual along visual rays using edge convolutions operating on the k nearest neighbors of each 3D point. While this approach is efficient, its run-time increases almost linearly with the number of iteration levels.</span></p><p><img src="imgs/fig9.png" alt="fig9" style="zoom:70%;" /></p><p align="center"> Point-MVSNet(Chen et al. 2019) </p><p><span>The key novelty of the presented method (CVP-MVSNet) is building a cost volume pyramid in a coarse-to-fine manner instead of constructing a cost volume at a fixed resolution, which leads to a compact, lightweight network and allows inferring high resolution depth maps to achieve better reconstruction results.</span></p><h1 id='method'><span>Method</span></h1><p><span>In this part, I will explain the methodology of the presented paper (CVP-MVSNet). First I will state the problem formally. Then each part of the method will be explained separately. Finally an overview will be given.</span></p><h2 id='problem-statement'><span>Problem statement</span></h2><p><span>Denote the reference image as </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="11.017ex" height="2.811ex" viewBox="0 -956.9 4743.4 1210.2" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E889-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E889-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E889-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E889-MJAMS-52" d="M17 665Q17 672 28 683H221Q415 681 439 677Q461 673 481 667T516 654T544 639T566 623T584 607T597 592T607 578T614 565T618 554L621 548Q626 530 626 497Q626 447 613 419Q578 348 473 326L455 321Q462 310 473 292T517 226T578 141T637 72T686 35Q705 30 705 16Q705 7 693 -1H510Q503 6 404 159L306 310H268V183Q270 67 271 59Q274 42 291 38Q295 37 319 35Q344 35 353 28Q362 17 353 3L346 -1H28Q16 5 16 16Q16 35 55 35Q96 38 101 52Q106 60 106 341T101 632Q95 645 55 648Q17 648 17 665ZM241 35Q238 42 237 45T235 78T233 163T233 337V621L237 635L244 648H133Q136 641 137 638T139 603T141 517T141 341Q141 131 140 89T134 37Q133 36 133 35H241ZM457 496Q457 540 449 570T425 615T400 634T377 643Q374 643 339 648Q300 648 281 635Q271 628 270 610T268 481V346H284Q327 346 375 352Q421 364 439 392T457 496ZM492 537T492 496T488 427T478 389T469 371T464 361Q464 360 465 360Q469 360 497 370Q593 400 593 495Q593 592 477 630L457 637L461 626Q474 611 488 561Q492 537 492 496ZM464 243Q411 317 410 317Q404 317 401 315Q384 315 370 312H346L526 35H619L606 50Q553 109 464 243Z"></path><path stroke-width="0" id="E889-MJMATHI-48" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E889-MJMAIN-D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z"></path><path stroke-width="0" id="E889-MJMATHI-57" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E889-MJMATHI-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E889-MJMAIN-30" x="622" y="-213"></use><use xlink:href="#E889-MJMAIN-2208" x="1171" y="0"></use><g transform="translate(2116,0)"><use xlink:href="#E889-MJAMS-52" x="0" y="0"></use><g transform="translate(722,409)"><use transform="scale(0.707)" xlink:href="#E889-MJMATHI-48" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E889-MJMAIN-D7" x="831" y="0"></use><use transform="scale(0.707)" xlink:href="#E889-MJMATHI-57" x="1609" y="0"></use></g></g></g></svg></span><script type="math/tex">I_0 \in \R^{𝐻×𝑊}</script><span>, where 𝐻 and 𝑊 defines its dimensions. Let </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="7.041ex" height="3.044ex" viewBox="0 -906.7 3031.6 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E908-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E908-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E908-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E908-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path><path stroke-width="0" id="E908-MJMATHI-4E" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path stroke-width="0" id="E908-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E908-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E908-MJMAIN-7B" x="0" y="0"></use><g transform="translate(500,0)"><use xlink:href="#E908-MJMATHI-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E908-MJMATHI-69" x="622" y="-213"></use></g><g transform="translate(1283,0)"><use xlink:href="#E908-MJMAIN-7D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E908-MJMATHI-4E" x="707" y="487"></use><g transform="translate(500,-307)"><use transform="scale(0.707)" xlink:href="#E908-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E908-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E908-MJMAIN-31" x="1123" y="0"></use></g></g></g></svg></span><script type="math/tex">\{𝐼_𝑖\}_{i=1}^𝑁</script><span> be its 𝑁 neighboring source images. The corresponding camera intrinsics, rotation matrix, and translation vector for all views </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="14.256ex" height="3.044ex" viewBox="0 -906.7 6137.8 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E393-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E393-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path stroke-width="0" id="E393-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E393-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E393-MJMATHI-52" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path stroke-width="0" id="E393-MJMATHI-74" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path><path stroke-width="0" id="E393-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path><path stroke-width="0" id="E393-MJMATHI-4E" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path stroke-width="0" id="E393-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E393-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E393-MJMAIN-7B" x="0" y="0"></use><g transform="translate(500,0)"><use xlink:href="#E393-MJMATHI-4B" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-69" x="1200" y="-213"></use></g><use xlink:href="#E393-MJMAIN-2C" x="1692" y="0"></use><g transform="translate(2137,0)"><use xlink:href="#E393-MJMATHI-52" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-69" x="1073" y="-213"></use></g><use xlink:href="#E393-MJMAIN-2C" x="3240" y="0"></use><g transform="translate(3685,0)"><use xlink:href="#E393-MJMATHI-74" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-69" x="510" y="-213"></use></g><g transform="translate(4390,0)"><use xlink:href="#E393-MJMAIN-7D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-4E" x="707" y="487"></use><g transform="translate(500,-307)"><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-30" x="1123" y="0"></use></g></g></g></svg></span><script type="math/tex">\{K_i,R_i, t_i\}^N_{i
=0}</script><span> are known. </span>
<span>The goal is to infer the depth map </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.923ex" height="1.877ex" viewBox="0 -755.9 828 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E926-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E926-MJMATHI-44" x="0" y="0"></use></g></svg></span><script type="math/tex">D</script><span> for </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.075ex" height="2.344ex" viewBox="0 -755.9 893.6 1009.2" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E340-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E340-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E340-MJMATHI-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E340-MJMAIN-30" x="622" y="-213"></use></g></svg></span><script type="math/tex">I_0</script><span> from </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="7.041ex" height="3.044ex" viewBox="0 -906.7 3031.6 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E908-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E908-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E908-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E908-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path><path stroke-width="0" id="E908-MJMATHI-4E" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path stroke-width="0" id="E908-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E908-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E908-MJMAIN-7B" x="0" y="0"></use><g transform="translate(500,0)"><use xlink:href="#E908-MJMATHI-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E908-MJMATHI-69" x="622" y="-213"></use></g><g transform="translate(1283,0)"><use xlink:href="#E908-MJMAIN-7D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E908-MJMATHI-4E" x="707" y="487"></use><g transform="translate(500,-307)"><use transform="scale(0.707)" xlink:href="#E908-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E908-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E908-MJMAIN-31" x="1123" y="0"></use></g></g></g></svg></span><script type="math/tex">\{𝐼_𝑖\}_{i=1}^𝑁</script><span> .</span></p><h2 id='feature-pyramid'><span>Feature pyramid</span></h2><p><span>The feature extraction pipeline consists of two steps. First a </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="7.389ex" height="2.577ex" viewBox="0 -806.1 3181.4 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E935-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E935-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E935-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E935-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E935-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E935-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E935-MJMATHI-4C" x="389" y="0"></use><use xlink:href="#E935-MJMAIN-2B" x="1292" y="0"></use><use xlink:href="#E935-MJMAIN-31" x="2292" y="0"></use><use xlink:href="#E935-MJMAIN-29" x="2792" y="0"></use></g></svg></span><script type="math/tex">(L+1)</script><span>-level image pyramid </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="7.455ex" height="3.628ex" viewBox="0 -1057.4 3209.6 1562" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E966-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E966-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E966-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E966-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E966-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path><path stroke-width="0" id="E966-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E966-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E966-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E966-MJMAIN-7B" x="0" y="0"></use><g transform="translate(500,0)"><use xlink:href="#E966-MJMATHI-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E966-MJMATHI-6A" x="739" y="691"></use><use transform="scale(0.707)" xlink:href="#E966-MJMATHI-69" x="622" y="-429"></use></g><g transform="translate(1414,0)"><use xlink:href="#E966-MJMAIN-7D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E966-MJMATHI-4C" x="707" y="489"></use><g transform="translate(500,-307)"><use transform="scale(0.707)" xlink:href="#E966-MJMATHI-6A" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E966-MJMAIN-3D" x="412" y="0"></use><use transform="scale(0.707)" xlink:href="#E966-MJMAIN-30" x="1189" y="0"></use></g></g></g></svg></span><script type="math/tex">\{I_i^j\}_{j=0}^L</script><span> for each input image is built, </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="16.545ex" height="2.577ex" viewBox="0 -806.1 7123.6 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E997-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E997-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E997-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E997-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E997-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E997-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E997-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E997-MJMATHI-4E" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path stroke-width="0" id="E997-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E997-MJMATHI-69" x="0" y="0"></use><use xlink:href="#E997-MJMAIN-2208" x="622" y="0"></use><use xlink:href="#E997-MJMAIN-7B" x="1567" y="0"></use><use xlink:href="#E997-MJMAIN-30" x="2067" y="0"></use><use xlink:href="#E997-MJMAIN-2C" x="2567" y="0"></use><use xlink:href="#E997-MJMAIN-31" x="3012" y="0"></use><use xlink:href="#E997-MJMAIN-2C" x="3512" y="0"></use><use xlink:href="#E997-MJMAIN-2E" x="3956" y="0"></use><use xlink:href="#E997-MJMAIN-2E" x="4401" y="0"></use><use xlink:href="#E997-MJMAIN-2E" x="4846" y="0"></use><use xlink:href="#E997-MJMAIN-2C" x="5290" y="0"></use><use xlink:href="#E997-MJMATHI-4E" x="5735" y="0"></use><use xlink:href="#E997-MJMAIN-7D" x="6623" y="0"></use></g></svg></span><script type="math/tex">i \in \{0,1,...,N\}</script><span>, where the bottom level of the pyramid corresponds to the input image, </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="7.187ex" height="3.044ex" viewBox="0 -906.7 3094.3 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E1021-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E1021-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E1021-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1021-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1021-MJMATHI-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1021-MJMAIN-30" x="739" y="509"></use><use transform="scale(0.707)" xlink:href="#E1021-MJMATHI-69" x="622" y="-429"></use><use xlink:href="#E1021-MJMAIN-3D" x="1254" y="0"></use><g transform="translate(2310,0)"><use xlink:href="#E1021-MJMATHI-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1021-MJMATHI-69" x="622" y="-213"></use></g></g></svg></span><script type="math/tex">I_i^0=I_i</script><span>. Second, feature representations at the </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.692ex" height="1.994ex" viewBox="0 -755.9 298 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1023-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1023-MJMATHI-6C" x="0" y="0"></use></g></svg></span><script type="math/tex">l</script><span>-th level are obtained by feeding the image into a CNN, namely </span><em><span>feature extraction network</span></em><span>. Note that the CNN at different level of the pyramid are the same, i.e. weights of the CNN are shared.</span>
<img src="imgs/fig10.png" referrerpolicy="no-referrer" alt="fig10"></p><p><span>The resulting feature map at level </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.692ex" height="1.994ex" viewBox="0 -755.9 298 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1023-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1023-MJMATHI-6C" x="0" y="0"></use></g></svg></span><script type="math/tex">l</script><span> is denoted as </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="26.354ex" height="3.511ex" viewBox="0 -1107.7 11346.9 1511.8" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E1118-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E1118-MJMATHI-66" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path stroke-width="0" id="E1118-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1118-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1118-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path><path stroke-width="0" id="E1118-MJMATHI-4E" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path stroke-width="0" id="E1118-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1118-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E1118-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1118-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E1118-MJAMS-52" d="M17 665Q17 672 28 683H221Q415 681 439 677Q461 673 481 667T516 654T544 639T566 623T584 607T597 592T607 578T614 565T618 554L621 548Q626 530 626 497Q626 447 613 419Q578 348 473 326L455 321Q462 310 473 292T517 226T578 141T637 72T686 35Q705 30 705 16Q705 7 693 -1H510Q503 6 404 159L306 310H268V183Q270 67 271 59Q274 42 291 38Q295 37 319 35Q344 35 353 28Q362 17 353 3L346 -1H28Q16 5 16 16Q16 35 55 35Q96 38 101 52Q106 60 106 341T101 632Q95 645 55 648Q17 648 17 665ZM241 35Q238 42 237 45T235 78T233 163T233 337V621L237 635L244 648H133Q136 641 137 638T139 603T141 517T141 341Q141 131 140 89T134 37Q133 36 133 35H241ZM457 496Q457 540 449 570T425 615T400 634T377 643Q374 643 339 648Q300 648 281 635Q271 628 270 610T268 481V346H284Q327 346 375 352Q421 364 439 392T457 496ZM492 537T492 496T488 427T478 389T469 371T464 361Q464 360 465 360Q469 360 497 370Q593 400 593 495Q593 592 477 630L457 637L461 626Q474 611 488 561Q492 537 492 496ZM464 243Q411 317 410 317Q404 317 401 315Q384 315 370 312H346L526 35H619L606 50Q553 109 464 243Z"></path><path stroke-width="0" id="E1118-MJMATHI-48" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E1118-MJMAIN-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path stroke-width="0" id="E1118-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E1118-MJMAIN-D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z"></path><path stroke-width="0" id="E1118-MJMATHI-57" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path stroke-width="0" id="E1118-MJMATHI-46" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1118-MJMAIN-7B" x="0" y="0"></use><g transform="translate(500,0)"><use xlink:href="#E1118-MJMATHI-66" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1118-MJMATHI-6C" x="803" y="499"></use><use transform="scale(0.707)" xlink:href="#E1118-MJMATHI-69" x="692" y="-429"></use></g><g transform="translate(1378,0)"><use xlink:href="#E1118-MJMAIN-7D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1118-MJMATHI-4E" x="707" y="487"></use><g transform="translate(500,-307)"><use transform="scale(0.707)" xlink:href="#E1118-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1118-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E1118-MJMAIN-30" x="1123" y="0"></use></g></g><use xlink:href="#E1118-MJMAIN-2C" x="3126" y="0"></use><g transform="translate(3571,0)"><use xlink:href="#E1118-MJMATHI-66" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1118-MJMATHI-6C" x="803" y="499"></use><use transform="scale(0.707)" xlink:href="#E1118-MJMATHI-69" x="692" y="-429"></use></g><use xlink:href="#E1118-MJMAIN-2208" x="4727" y="0"></use><g transform="translate(5672,0)"><use xlink:href="#E1118-MJAMS-52" x="0" y="0"></use><g transform="translate(722,409)"><use transform="scale(0.707)" xlink:href="#E1118-MJMATHI-48" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1118-MJMAIN-2F" x="888" y="0"></use><g transform="translate(981,0)"><use transform="scale(0.707)" xlink:href="#E1118-MJMAIN-32" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E1118-MJMATHI-6C" x="707" y="555"></use></g><use transform="scale(0.707)" xlink:href="#E1118-MJMAIN-D7" x="2198" y="0"></use><use transform="scale(0.707)" xlink:href="#E1118-MJMATHI-57" x="2976" y="0"></use><use transform="scale(0.707)" xlink:href="#E1118-MJMAIN-2F" x="4024" y="0"></use><g transform="translate(3199,0)"><use transform="scale(0.707)" xlink:href="#E1118-MJMAIN-32" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E1118-MJMATHI-6C" x="707" y="555"></use></g><use transform="scale(0.707)" xlink:href="#E1118-MJMAIN-D7" x="5335" y="0"></use><use transform="scale(0.707)" xlink:href="#E1118-MJMATHI-46" x="6113" y="0"></use></g></g></g></svg></span><script type="math/tex">\{f_i^l\}_{i=0}^N, f_i^l \in \R^{H/2^l\times W/2^l\times F}</script><span>, where </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.74ex" height="1.877ex" viewBox="0 -755.9 749 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E1122-MJMATHI-46" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1122-MJMATHI-46" x="0" y="0"></use></g></svg></span><script type="math/tex">F</script><span> is the number of feature channels.</span></p><h2 id='cost-volume-pyramid'><span>Cost volume pyramid</span></h2><p><span>In the introduction part, cost volume is built directly on images. In practice, building cost volume on learnable features is more robust against illumination changes. Also, previously I only mentioned that the depth hypotheses could be sampled uniformly in the depth range </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.085ex" height="2.577ex" viewBox="0 -806.1 5633.7 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E1028-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1028-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E1028-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1028-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1028-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1028-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1028-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E1028-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E1028-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1028-MJMAIN-28" x="0" y="0"></use><g transform="translate(389,0)"><use xlink:href="#E1028-MJMATHI-64" x="0" y="0"></use><g transform="translate(520,-150)"><use transform="scale(0.707)" xlink:href="#E1028-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1028-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E1028-MJMATHI-6E" x="1223" y="0"></use></g></g><use xlink:href="#E1028-MJMAIN-2C" x="2298" y="0"></use><use xlink:href="#E1028-MJMATHI-64" x="2742" y="0"></use><g transform="translate(3265,0)"><use xlink:href="#E1028-MJMATHI-6D" x="0" y="0"></use><use xlink:href="#E1028-MJMATHI-61" x="878" y="0"></use><use xlink:href="#E1028-MJMATHI-78" x="1407" y="0"></use></g><use xlink:href="#E1028-MJMAIN-29" x="5244" y="0"></use></g></svg></span><script type="math/tex">(d_{min}, d{max})</script><span>, which is adopted in </span><a href='https://openaccess.thecvf.com/content_ECCV_2018/html/Yao_Yao_MVSNet_Depth_Inference_ECCV_2018_paper.html'><span>MVSNet</span></a><span> and is proven to be too memory consuming. The key novelty of this paper is about iterative sampling of the depth hypotheses in a coarse-to-fine manner. </span>
<strong><span>1.Cost volume at coarsest level</span></strong><span>: at coarsest level of the feature pyramid, depth hypotheses are uniformly sampled in the whole depth range. The resulting cost volume is then fed into a depth estimator network, which will be introduced below, to predict the depth map at the coarsest level. This step is same as in the introductory part of cost volume.</span>
<strong><span>2. Iterative refinement</span></strong><span>: </span><mark><span>for each level afterwards, the depth search range will be centered around the previously estimated depth with a smaller searching interval, and thus producing more accurate depth map.</span></mark></p><p><img src="imgs/fig12.gif" alt="fig11" style="zoom:120%;" /></p><p><span>Mathematically, the iterative refinement step can be formulated as follows. Assume we have the depth estimate </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.744ex" height="2.227ex" viewBox="0 -906.7 2042.4 958.9" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E1284-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path><path stroke-width="0" id="E1284-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1284-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E1284-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1284-MJMATHI-44" x="0" y="0"></use><g transform="translate(828,362)"><use transform="scale(0.707)" xlink:href="#E1284-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1284-MJMAIN-2B" x="298" y="0"></use><use transform="scale(0.707)" xlink:href="#E1284-MJMAIN-31" x="1076" y="0"></use></g></g></svg></span><script type="math/tex">D^{l+1}</script><span> at </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.693ex" height="2.11ex" viewBox="0 -755.9 2020.4 908.7" role="img" focusable="false" style="vertical-align: -0.355ex;"><defs><path stroke-width="0" id="E1268-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1268-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E1268-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1268-MJMATHI-6C" x="0" y="0"></use><use xlink:href="#E1268-MJMAIN-2B" x="520" y="0"></use><use xlink:href="#E1268-MJMAIN-31" x="1520" y="0"></use></g></svg></span><script type="math/tex">l+1</script><span> level. </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.744ex" height="2.227ex" viewBox="0 -906.7 2042.4 958.9" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E1284-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path><path stroke-width="0" id="E1284-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1284-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E1284-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1284-MJMATHI-44" x="0" y="0"></use><g transform="translate(828,362)"><use transform="scale(0.707)" xlink:href="#E1284-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1284-MJMAIN-2B" x="298" y="0"></use><use transform="scale(0.707)" xlink:href="#E1284-MJMAIN-31" x="1076" y="0"></use></g></g></svg></span><script type="math/tex">D^{l+1}</script><span> has to be upsampled to match the resolution at level </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.692ex" height="1.994ex" viewBox="0 -755.9 298 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1023-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1023-MJMATHI-6C" x="0" y="0"></use></g></svg></span><script type="math/tex">l</script><span>, and the upsampled depth estimate is denoted as </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.744ex" height="3.511ex" viewBox="0 -956.9 2042.4 1511.8" role="img" focusable="false" style="vertical-align: -1.289ex;"><defs><path stroke-width="0" id="E1307-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path><path stroke-width="0" id="E1307-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1307-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E1307-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1307-MJMAIN-2191" d="M27 414Q17 414 17 433Q17 437 17 439T17 444T19 447T20 450T22 452T26 453T30 454T36 456Q80 467 120 494T180 549Q227 607 238 678Q240 694 251 694Q259 694 261 684Q261 677 265 659T284 608T320 549Q340 525 363 507T405 479T440 463T467 455T479 451Q483 447 483 433Q483 413 472 413Q467 413 458 416Q342 448 277 545L270 555V-179Q262 -193 252 -193H250H248Q236 -193 230 -179V555L223 545Q192 499 146 467T70 424T27 414Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1307-MJMATHI-44" x="0" y="0"></use><g transform="translate(828,402)"><use transform="scale(0.707)" xlink:href="#E1307-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1307-MJMAIN-2B" x="298" y="0"></use><use transform="scale(0.707)" xlink:href="#E1307-MJMAIN-31" x="1076" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E1307-MJMAIN-2191" x="1170" y="-462"></use></g></svg></span><script type="math/tex">D^{l+1}_{\uparrow}</script><span>. Current initial depth estimate for each pixel </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="9.651ex" height="2.577ex" viewBox="-39 -806.1 4155.2 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex; margin-left: -0.091ex;"><defs><path stroke-width="0" id="E406-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E406-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E406-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E406-MJMATHI-75" d="M21 287Q21 295 30 318T55 370T99 420T158 442Q204 442 227 417T250 358Q250 340 216 246T182 105Q182 62 196 45T238 27T291 44T328 78L339 95Q341 99 377 247Q407 367 413 387T427 416Q444 431 463 431Q480 431 488 421T496 402L420 84Q419 79 419 68Q419 43 426 35T447 26Q469 29 482 57T512 145Q514 153 532 153Q551 153 551 144Q550 139 549 130T540 98T523 55T498 17T462 -8Q454 -10 438 -10Q372 -10 347 46Q345 45 336 36T318 21T296 6T267 -6T233 -11Q189 -11 155 7Q103 38 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E406-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E406-MJMATHI-76" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z"></path><path stroke-width="0" id="E406-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E406-MJMATHI-70" x="0" y="0"></use><use xlink:href="#E406-MJMAIN-3D" x="780" y="0"></use><use xlink:href="#E406-MJMAIN-28" x="1836" y="0"></use><use xlink:href="#E406-MJMATHI-75" x="2225" y="0"></use><use xlink:href="#E406-MJMAIN-2C" x="2797" y="0"></use><use xlink:href="#E406-MJMATHI-76" x="3242" y="0"></use><use xlink:href="#E406-MJMAIN-29" x="3727" y="0"></use></g></svg></span><script type="math/tex">p=(u,v)</script><span> is defined as </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="15.402ex" height="3.511ex" viewBox="0 -956.9 6631.3 1511.8" role="img" focusable="false" style="vertical-align: -1.289ex;"><defs><path stroke-width="0" id="E1323-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E1323-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1323-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1323-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path><path stroke-width="0" id="E1323-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1323-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E1323-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1323-MJMAIN-2191" d="M27 414Q17 414 17 433Q17 437 17 439T17 444T19 447T20 450T22 452T26 453T30 454T36 456Q80 467 120 494T180 549Q227 607 238 678Q240 694 251 694Q259 694 261 684Q261 677 265 659T284 608T320 549Q340 525 363 507T405 479T440 463T467 455T479 451Q483 447 483 433Q483 413 472 413Q467 413 458 416Q342 448 277 545L270 555V-179Q262 -193 252 -193H250H248Q236 -193 230 -179V555L223 545Q192 499 146 467T70 424T27 414Z"></path><path stroke-width="0" id="E1323-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1323-MJMATHI-75" d="M21 287Q21 295 30 318T55 370T99 420T158 442Q204 442 227 417T250 358Q250 340 216 246T182 105Q182 62 196 45T238 27T291 44T328 78L339 95Q341 99 377 247Q407 367 413 387T427 416Q444 431 463 431Q480 431 488 421T496 402L420 84Q419 79 419 68Q419 43 426 35T447 26Q469 29 482 57T512 145Q514 153 532 153Q551 153 551 144Q550 139 549 130T540 98T523 55T498 17T462 -8Q454 -10 438 -10Q372 -10 347 46Q345 45 336 36T318 21T296 6T267 -6T233 -11Q189 -11 155 7Q103 38 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1323-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1323-MJMATHI-76" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z"></path><path stroke-width="0" id="E1323-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1323-MJMATHI-64" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1323-MJMATHI-70" x="735" y="-213"></use><use xlink:href="#E1323-MJMAIN-3D" x="1253" y="0"></use><g transform="translate(2309,0)"><use xlink:href="#E1323-MJMATHI-44" x="0" y="0"></use><g transform="translate(828,402)"><use transform="scale(0.707)" xlink:href="#E1323-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1323-MJMAIN-2B" x="298" y="0"></use><use transform="scale(0.707)" xlink:href="#E1323-MJMAIN-31" x="1076" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E1323-MJMAIN-2191" x="1170" y="-462"></use></g><use xlink:href="#E1323-MJMAIN-28" x="4351" y="0"></use><use xlink:href="#E1323-MJMATHI-75" x="4740" y="0"></use><use xlink:href="#E1323-MJMAIN-2C" x="5312" y="0"></use><use xlink:href="#E1323-MJMATHI-76" x="5757" y="0"></use><use xlink:href="#E1323-MJMAIN-29" x="6242" y="0"></use></g></svg></span><script type="math/tex">d_p=D^{l+1}_{\uparrow}(u,v)</script><span>. Let each depth residual hypothesis interval be </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.048ex" height="2.694ex" viewBox="0 -806.1 5617.9 1160" role="img" focusable="false" style="vertical-align: -0.822ex;"><defs><path stroke-width="0" id="E1358-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path stroke-width="0" id="E1358-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E1358-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1358-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1358-MJMATHI-73" d="M131 289Q131 321 147 354T203 415T300 442Q362 442 390 415T419 355Q419 323 402 308T364 292Q351 292 340 300T328 326Q328 342 337 354T354 372T367 378Q368 378 368 379Q368 382 361 388T336 399T297 405Q249 405 227 379T204 326Q204 301 223 291T278 274T330 259Q396 230 396 163Q396 135 385 107T352 51T289 7T195 -10Q118 -10 86 19T53 87Q53 126 74 143T118 160Q133 160 146 151T160 120Q160 94 142 76T111 58Q109 57 108 57T107 55Q108 52 115 47T146 34T201 27Q237 27 263 38T301 66T318 97T323 122Q323 150 302 164T254 181T195 196T148 231Q131 256 131 289Z"></path><path stroke-width="0" id="E1358-MJMAIN-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path stroke-width="0" id="E1358-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1358-MJMAIN-394" x="0" y="0"></use><g transform="translate(833,0)"><use xlink:href="#E1358-MJMATHI-64" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1358-MJMATHI-70" x="735" y="-213"></use></g><use xlink:href="#E1358-MJMAIN-3D" x="2086" y="0"></use><g transform="translate(3142,0)"><use xlink:href="#E1358-MJMATHI-73" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1358-MJMATHI-70" x="663" y="-213"></use></g><use xlink:href="#E1358-MJMAIN-2F" x="4066" y="0"></use><use xlink:href="#E1358-MJMATHI-4D" x="4566" y="0"></use></g></svg></span><script type="math/tex">\Delta d_p=s_p/M</script><span>, where </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.148ex" height="1.994ex" viewBox="0 -504.6 924.7 858.4" role="img" focusable="false" style="vertical-align: -0.822ex;"><defs><path stroke-width="0" id="E1362-MJMATHI-73" d="M131 289Q131 321 147 354T203 415T300 442Q362 442 390 415T419 355Q419 323 402 308T364 292Q351 292 340 300T328 326Q328 342 337 354T354 372T367 378Q368 378 368 379Q368 382 361 388T336 399T297 405Q249 405 227 379T204 326Q204 301 223 291T278 274T330 259Q396 230 396 163Q396 135 385 107T352 51T289 7T195 -10Q118 -10 86 19T53 87Q53 126 74 143T118 160Q133 160 146 151T160 120Q160 94 142 76T111 58Q109 57 108 57T107 55Q108 52 115 47T146 34T201 27Q237 27 263 38T301 66T318 97T323 122Q323 150 302 164T254 181T195 196T148 231Q131 256 131 289Z"></path><path stroke-width="0" id="E1362-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1362-MJMATHI-73" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1362-MJMATHI-70" x="663" y="-213"></use></g></svg></span><script type="math/tex">s_p</script><span> represents the depth search range at </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.259ex" height="1.76ex" viewBox="-39 -504.6 542 757.9" role="img" focusable="false" style="vertical-align: -0.588ex; margin-left: -0.091ex;"><defs><path stroke-width="0" id="E395-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E395-MJMATHI-70" x="0" y="0"></use></g></svg></span><script type="math/tex">p</script><span> and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.441ex" height="1.877ex" viewBox="0 -755.9 1051 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E154-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E154-MJMATHI-4D" x="0" y="0"></use></g></svg></span><script type="math/tex">M</script><span> denotes the number of sampled depth residual. The </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.692ex" height="1.994ex" viewBox="0 -755.9 298 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1023-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1023-MJMATHI-6C" x="0" y="0"></use></g></svg></span><script type="math/tex">l</script><span> level cost volume value at pixel </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.259ex" height="1.76ex" viewBox="-39 -504.6 542 757.9" role="img" focusable="false" style="vertical-align: -0.588ex; margin-left: -0.091ex;"><defs><path stroke-width="0" id="E395-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E395-MJMATHI-70" x="0" y="0"></use></g></svg></span><script type="math/tex">p</script><span> can be computed as follows:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n1753" cid="n1753" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-1450-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="42.497ex" height="7.19ex" viewBox="0 -1836 18297.4 3095.6" role="img" focusable="false" style="vertical-align: -2.926ex; max-width: 100%;"><defs><path stroke-width="0" id="E1947-MJMATHI-43" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q484 659 454 652T382 628T299 572T226 479Q194 422 175 346T156 222Q156 108 232 58Q280 24 350 24Q441 24 512 92T606 240Q610 253 612 255T628 257Q648 257 648 248Q648 243 647 239Q618 132 523 55T319 -22Q206 -22 128 53T50 252Z"></path><path stroke-width="0" id="E1947-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1947-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1947-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1947-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1947-MJMATHI-4E" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path stroke-width="0" id="E1947-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E1947-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E1947-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1947-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E1947-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1947-MJMATHI-66" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path stroke-width="0" id="E1947-MJMAIN-3A0" d="M128 619Q121 626 117 628T101 631T58 634H25V680H724V634H691Q651 633 640 631T622 619V61Q628 51 639 49T691 46H724V0H713Q692 3 569 3Q434 3 425 0H414V46H447Q489 47 498 49T517 61V634H232V348L233 61Q239 51 250 49T302 46H335V0H324Q303 3 180 3Q45 3 36 0H25V46H58Q100 47 109 49T128 61V619Z"></path><path stroke-width="0" id="E1947-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1947-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1947-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1947-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E1947-MJMAIN-AF" d="M69 544V590H430V544H69Z"></path><path stroke-width="0" id="E1947-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1947-MJMATHI-43" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1947-MJMATHI-6C" x="1093" y="499"></use><use transform="scale(0.707)" xlink:href="#E1947-MJMATHI-6D" x="1011" y="-211"></use><use xlink:href="#E1947-MJMAIN-3D" x="1713" y="0"></use><g transform="translate(2491,0)"><g transform="translate(397,0)"><rect stroke="none" width="2730" height="60" x="0" y="220"></rect><use xlink:href="#E1947-MJMAIN-31" x="1115" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E1947-MJMATHI-4E" x="0" y="0"></use><use xlink:href="#E1947-MJMAIN-2B" x="1110" y="0"></use><use xlink:href="#E1947-MJMAIN-31" x="2110" y="0"></use></g></g></g><g transform="translate(5906,0)"><use xlink:href="#E1947-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E1947-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1947-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E1947-MJMAIN-30" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E1947-MJMATHI-4E" x="577" y="1626"></use></g><use xlink:href="#E1947-MJMAIN-28" x="7350" y="0"></use><g transform="translate(7739,0)"><use xlink:href="#E1947-MJMATHI-66" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1947-MJMATHI-6C" x="803" y="499"></use><use transform="scale(0.707)" xlink:href="#E1947-MJMATHI-69" x="692" y="-429"></use></g><use xlink:href="#E1947-MJMAIN-28" x="8618" y="0"></use><use xlink:href="#E1947-MJMAIN-3A0" x="9007" y="0"></use><use xlink:href="#E1947-MJMAIN-28" x="9757" y="0"></use><use xlink:href="#E1947-MJMATHI-70" x="10146" y="0"></use><use xlink:href="#E1947-MJMAIN-2C" x="10649" y="0"></use><use xlink:href="#E1947-MJMATHI-6D" x="11093" y="0"></use><use xlink:href="#E1947-MJMAIN-29" x="11971" y="0"></use><use xlink:href="#E1947-MJMAIN-29" x="12360" y="0"></use><use xlink:href="#E1947-MJMAIN-2212" x="12972" y="0"></use><g transform="translate(13972,0)"><use xlink:href="#E1947-MJMATHI-66" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1947-MJMATHI-6C" x="803" y="583"></use><use xlink:href="#E1947-MJMAIN-AF" x="189" y="438"></use></g><use xlink:href="#E1947-MJMAIN-28" x="14851" y="0"></use><use xlink:href="#E1947-MJMATHI-70" x="15240" y="0"></use><use xlink:href="#E1947-MJMAIN-2C" x="15743" y="0"></use><use xlink:href="#E1947-MJMATHI-6D" x="16187" y="0"></use><use xlink:href="#E1947-MJMAIN-29" x="17065" y="0"></use><g transform="translate(17454,0)"><use xlink:href="#E1947-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1947-MJMAIN-32" x="550" y="583"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-1450">C_m^l=\frac{1}{N+1}\sum^N_{i=0}(f_i^l(\Pi(p,m))-\bar{f^l}(p,m))^2</script></div></div><p><span>where</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.742ex" height="1.877ex" viewBox="0 -755.9 750 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E474-MJMAIN-3A0" d="M128 619Q121 626 117 628T101 631T58 634H25V680H724V634H691Q651 633 640 631T622 619V61Q628 51 639 49T691 46H724V0H713Q692 3 569 3Q434 3 425 0H414V46H447Q489 47 498 49T517 61V634H232V348L233 61Q239 51 250 49T302 46H335V0H324Q303 3 180 3Q45 3 36 0H25V46H58Q100 47 109 49T128 61V619Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E474-MJMAIN-3A0" x="0" y="0"></use></g></svg></span><script type="math/tex">\Pi</script><span> is the warping function: </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="26.946ex" height="2.811ex" viewBox="0 -906.7 11601.9 1210.2" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E1552-MJMAIN-3A0" d="M128 619Q121 626 117 628T101 631T58 634H25V680H724V634H691Q651 633 640 631T622 619V61Q628 51 639 49T691 46H724V0H713Q692 3 569 3Q434 3 425 0H414V46H447Q489 47 498 49T517 61V634H232V348L233 61Q239 51 250 49T302 46H335V0H324Q303 3 180 3Q45 3 36 0H25V46H58Q100 47 109 49T128 61V619Z"></path><path stroke-width="0" id="E1552-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1552-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1552-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1552-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1552-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1552-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1552-MJMATHI-3C0" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path stroke-width="0" id="E1552-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1552-MJMAIN-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path stroke-width="0" id="E1552-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E1552-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E1552-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1552-MJMAIN-3A0" x="0" y="0"></use><use xlink:href="#E1552-MJMAIN-28" x="750" y="0"></use><use xlink:href="#E1552-MJMATHI-70" x="1139" y="0"></use><use xlink:href="#E1552-MJMAIN-2C" x="1642" y="0"></use><use xlink:href="#E1552-MJMATHI-6D" x="2086" y="0"></use><use xlink:href="#E1552-MJMAIN-29" x="2964" y="0"></use><use xlink:href="#E1552-MJMAIN-3D" x="3631" y="0"></use><use xlink:href="#E1552-MJMAIN-28" x="4687" y="0"></use><g transform="translate(5076,0)"><use xlink:href="#E1552-MJMATHI-3C0" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1552-MJMAIN-31" x="806" y="-213"></use></g><use xlink:href="#E1552-MJMAIN-2F" x="6099" y="0"></use><g transform="translate(6599,0)"><use xlink:href="#E1552-MJMATHI-3C0" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1552-MJMAIN-33" x="806" y="-213"></use></g><use xlink:href="#E1552-MJMAIN-2C" x="7623" y="0"></use><g transform="translate(8067,0)"><use xlink:href="#E1552-MJMATHI-3C0" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1552-MJMAIN-32" x="806" y="-213"></use></g><use xlink:href="#E1552-MJMAIN-2F" x="9091" y="0"></use><g transform="translate(9591,0)"><use xlink:href="#E1552-MJMATHI-3C0" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1552-MJMAIN-33" x="806" y="-213"></use></g><g transform="translate(10615,0)"><use xlink:href="#E1552-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1552-MJMATHI-54" x="550" y="513"></use></g></g></svg></span><script type="math/tex">\Pi(p,m) = (\pi_1/\pi_3, \pi_2/\pi_3)^T</script><span> and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="54.106ex" height="3.511ex" viewBox="0 -1107.7 23295.5 1511.8" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E1599-MJMATHI-3C0" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path stroke-width="0" id="E1599-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1599-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path stroke-width="0" id="E1599-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1599-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1599-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1599-MJMATHI-52" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path stroke-width="0" id="E1599-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E1599-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1599-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E1599-MJMATHI-75" d="M21 287Q21 295 30 318T55 370T99 420T158 442Q204 442 227 417T250 358Q250 340 216 246T182 105Q182 62 196 45T238 27T291 44T328 78L339 95Q341 99 377 247Q407 367 413 387T427 416Q444 431 463 431Q480 431 488 421T496 402L420 84Q419 79 419 68Q419 43 426 35T447 26Q469 29 482 57T512 145Q514 153 532 153Q551 153 551 144Q550 139 549 130T540 98T523 55T498 17T462 -8Q454 -10 438 -10Q372 -10 347 46Q345 45 336 36T318 21T296 6T267 -6T233 -11Q189 -11 155 7Q103 38 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1599-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1599-MJMATHI-76" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z"></path><path stroke-width="0" id="E1599-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1599-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E1599-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E1599-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1599-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E1599-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1599-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path stroke-width="0" id="E1599-MJMATHI-74" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1599-MJMATHI-3C0" x="0" y="0"></use><use xlink:href="#E1599-MJMAIN-3D" x="850" y="0"></use><g transform="translate(1906,0)"><use xlink:href="#E1599-MJMATHI-4B" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1599-MJMATHI-6C" x="1274" y="499"></use><use transform="scale(0.707)" xlink:href="#E1599-MJMATHI-69" x="1200" y="-429"></use></g><use xlink:href="#E1599-MJMAIN-28" x="3118" y="0"></use><g transform="translate(3507,0)"><use xlink:href="#E1599-MJMATHI-52" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1599-MJMATHI-69" x="1073" y="-213"></use></g><g transform="translate(4610,0)"><use xlink:href="#E1599-MJMATHI-52" x="0" y="0"></use><g transform="translate(759,402)"><use transform="scale(0.707)" xlink:href="#E1599-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1599-MJMAIN-31" x="778" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E1599-MJMAIN-30" x="1073" y="-434"></use></g><use xlink:href="#E1599-MJMAIN-28" x="6372" y="0"></use><g transform="translate(6761,0)"><use xlink:href="#E1599-MJMATHI-4B" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1599-MJMATHI-6C" x="1274" y="499"></use><use transform="scale(0.707)" xlink:href="#E1599-MJMAIN-30" x="1200" y="-434"></use><g transform="translate(1302,571)"><use transform="scale(0.707)" xlink:href="#E1599-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1599-MJMAIN-31" x="778" y="0"></use></g></g><use xlink:href="#E1599-MJMAIN-28" x="9068" y="0"></use><use xlink:href="#E1599-MJMATHI-75" x="9457" y="0"></use><use xlink:href="#E1599-MJMAIN-2C" x="10029" y="0"></use><use xlink:href="#E1599-MJMATHI-76" x="10473" y="0"></use><use xlink:href="#E1599-MJMAIN-2C" x="10958" y="0"></use><use xlink:href="#E1599-MJMAIN-31" x="11403" y="0"></use><g transform="translate(11903,0)"><use xlink:href="#E1599-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1599-MJMATHI-54" x="550" y="513"></use></g><use xlink:href="#E1599-MJMAIN-28" x="12890" y="0"></use><g transform="translate(13279,0)"><use xlink:href="#E1599-MJMATHI-64" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1599-MJMATHI-70" x="735" y="-213"></use></g><use xlink:href="#E1599-MJMAIN-2B" x="14477" y="0"></use><use xlink:href="#E1599-MJMATHI-6D" x="15477" y="0"></use><use xlink:href="#E1599-MJMAIN-394" x="16355" y="0"></use><g transform="translate(17188,0)"><use xlink:href="#E1599-MJMATHI-64" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1599-MJMATHI-70" x="735" y="-213"></use></g><use xlink:href="#E1599-MJMAIN-29" x="18164" y="0"></use><use xlink:href="#E1599-MJMAIN-2212" x="18775" y="0"></use><g transform="translate(19775,0)"><use xlink:href="#E1599-MJMATHI-74" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1599-MJMAIN-30" x="510" y="-213"></use></g><use xlink:href="#E1599-MJMAIN-29" x="20590" y="0"></use><use xlink:href="#E1599-MJMAIN-2B" x="21201" y="0"></use><g transform="translate(22201,0)"><use xlink:href="#E1599-MJMATHI-74" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1599-MJMATHI-69" x="510" y="-213"></use></g><use xlink:href="#E1599-MJMAIN-29" x="22906" y="0"></use></g></svg></span><script type="math/tex">\pi = K_i^l(R_iR_0^{-1}({K_0^l}^{-1}(u,v,1)^T(d_p+m\Delta d_p)-t_0)+t_i)</script><span>;</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="8.088ex" height="2.928ex" viewBox="0 -956.9 3482.4 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E1603-MJMATHI-66" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path stroke-width="0" id="E1603-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1603-MJMAIN-AF" d="M69 544V590H430V544H69Z"></path><path stroke-width="0" id="E1603-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1603-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1603-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1603-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1603-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1603-MJMATHI-66" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1603-MJMATHI-6C" x="803" y="408"></use><use xlink:href="#E1603-MJMAIN-AF" x="189" y="311"></use><use xlink:href="#E1603-MJMAIN-28" x="878" y="0"></use><use xlink:href="#E1603-MJMATHI-70" x="1267" y="0"></use><use xlink:href="#E1603-MJMAIN-2C" x="1770" y="0"></use><use xlink:href="#E1603-MJMATHI-6D" x="2215" y="0"></use><use xlink:href="#E1603-MJMAIN-29" x="3093" y="0"></use></g></svg></span><script type="math/tex">\bar{f^l}(p,m)</script><span> is the mean of features: </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="33.341ex" height="3.628ex" viewBox="0 -1057.4 14355 1562" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E1624-MJMATHI-66" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path stroke-width="0" id="E1624-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1624-MJMAIN-AF" d="M69 544V590H430V544H69Z"></path><path stroke-width="0" id="E1624-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1624-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1624-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1624-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1624-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1624-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1624-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1624-MJMATHI-4E" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path stroke-width="0" id="E1624-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E1624-MJSZ1-2211" d="M61 748Q64 750 489 750H913L954 640Q965 609 976 579T993 533T999 516H979L959 517Q936 579 886 621T777 682Q724 700 655 705T436 710H319Q183 710 183 709Q186 706 348 484T511 259Q517 250 513 244L490 216Q466 188 420 134T330 27L149 -187Q149 -188 362 -188Q388 -188 436 -188T506 -189Q679 -189 778 -162T936 -43Q946 -27 959 6H999L913 -249L489 -250Q65 -250 62 -248Q56 -246 56 -239Q56 -234 118 -161Q186 -81 245 -11L428 206Q428 207 242 462L57 717L56 728Q56 744 61 748Z"></path><path stroke-width="0" id="E1624-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1624-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E1624-MJMAIN-3A0" d="M128 619Q121 626 117 628T101 631T58 634H25V680H724V634H691Q651 633 640 631T622 619V61Q628 51 639 49T691 46H724V0H713Q692 3 569 3Q434 3 425 0H414V46H447Q489 47 498 49T517 61V634H232V348L233 61Q239 51 250 49T302 46H335V0H324Q303 3 180 3Q45 3 36 0H25V46H58Q100 47 109 49T128 61V619Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1624-MJMATHI-66" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1624-MJMATHI-6C" x="803" y="408"></use><use xlink:href="#E1624-MJMAIN-AF" x="189" y="311"></use><use xlink:href="#E1624-MJMAIN-28" x="878" y="0"></use><use xlink:href="#E1624-MJMATHI-70" x="1267" y="0"></use><use xlink:href="#E1624-MJMAIN-2C" x="1770" y="0"></use><use xlink:href="#E1624-MJMATHI-6D" x="2215" y="0"></use><use xlink:href="#E1624-MJMAIN-29" x="3093" y="0"></use><use xlink:href="#E1624-MJMAIN-3D" x="3760" y="0"></use><g transform="translate(4538,0)"><g transform="translate(397,0)"><rect stroke="none" width="1651" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E1624-MJMAIN-31" x="917" y="571"></use><g transform="translate(60,-388)"><use transform="scale(0.707)" xlink:href="#E1624-MJMATHI-4E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1624-MJMAIN-2B" x="888" y="0"></use><use transform="scale(0.707)" xlink:href="#E1624-MJMAIN-31" x="1666" y="0"></use></g></g></g><g transform="translate(6874,0)"><use xlink:href="#E1624-MJSZ1-2211" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1624-MJMATHI-4E" x="1493" y="674"></use><g transform="translate(1056,-286)"><use transform="scale(0.707)" xlink:href="#E1624-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1624-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E1624-MJMAIN-30" x="1123" y="0"></use></g></g><g transform="translate(9344,0)"><use xlink:href="#E1624-MJMATHI-66" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1624-MJMATHI-6C" x="803" y="499"></use><use transform="scale(0.707)" xlink:href="#E1624-MJMATHI-69" x="692" y="-429"></use></g><use xlink:href="#E1624-MJMAIN-28" x="10223" y="0"></use><use xlink:href="#E1624-MJMAIN-3A0" x="10612" y="0"></use><use xlink:href="#E1624-MJMAIN-28" x="11362" y="0"></use><use xlink:href="#E1624-MJMATHI-70" x="11751" y="0"></use><use xlink:href="#E1624-MJMAIN-2C" x="12254" y="0"></use><use xlink:href="#E1624-MJMATHI-6D" x="12698" y="0"></use><use xlink:href="#E1624-MJMAIN-29" x="13576" y="0"></use><use xlink:href="#E1624-MJMAIN-29" x="13965" y="0"></use></g></svg></span><script type="math/tex">\bar{f^l}(p,m) =\frac{1}{N+1}\sum^N_{i=0}f_i^l(\Pi(p,m))</script><span>;</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="27.7ex" height="2.577ex" viewBox="0 -806.1 11926.3 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E1646-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1646-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E1646-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E1646-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E1646-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path stroke-width="0" id="E1646-MJMAIN-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path stroke-width="0" id="E1646-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E1646-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1646-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E1646-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1646-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1646-MJMATHI-6D" x="0" y="0"></use><use xlink:href="#E1646-MJMAIN-2208" x="1155" y="0"></use><use xlink:href="#E1646-MJMAIN-7B" x="2100" y="0"></use><use xlink:href="#E1646-MJMAIN-2212" x="2600" y="0"></use><use xlink:href="#E1646-MJMATHI-4D" x="3378" y="0"></use><use xlink:href="#E1646-MJMAIN-2F" x="4429" y="0"></use><use xlink:href="#E1646-MJMAIN-32" x="4929" y="0"></use><use xlink:href="#E1646-MJMAIN-2C" x="5429" y="0"></use><use xlink:href="#E1646-MJMAIN-2E" x="5874" y="0"></use><use xlink:href="#E1646-MJMAIN-2E" x="6318" y="0"></use><use xlink:href="#E1646-MJMAIN-2E" x="6763" y="0"></use><use xlink:href="#E1646-MJMAIN-2C" x="7208" y="0"></use><use xlink:href="#E1646-MJMATHI-4D" x="7652" y="0"></use><use xlink:href="#E1646-MJMAIN-2F" x="8703" y="0"></use><use xlink:href="#E1646-MJMAIN-32" x="9203" y="0"></use><use xlink:href="#E1646-MJMAIN-2212" x="9926" y="0"></use><use xlink:href="#E1646-MJMAIN-31" x="10926" y="0"></use><use xlink:href="#E1646-MJMAIN-7D" x="11426" y="0"></use></g></svg></span><script type="math/tex">m \in \{-M/2,...,M/2-1\}</script><span>.</span></p><p><span>The resulting cost volume at level </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.692ex" height="1.994ex" viewBox="0 -755.9 298 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1023-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1023-MJMATHI-6C" x="0" y="0"></use></g></svg></span><script type="math/tex">l</script><span> is denoted as </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="21.541ex" height="2.811ex" viewBox="0 -1107.7 9274.6 1210.2" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1159-MJMATHI-43" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q484 659 454 652T382 628T299 572T226 479Q194 422 175 346T156 222Q156 108 232 58Q280 24 350 24Q441 24 512 92T606 240Q610 253 612 255T628 257Q648 257 648 248Q648 243 647 239Q618 132 523 55T319 -22Q206 -22 128 53T50 252Z"></path><path stroke-width="0" id="E1159-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1159-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E1159-MJAMS-52" d="M17 665Q17 672 28 683H221Q415 681 439 677Q461 673 481 667T516 654T544 639T566 623T584 607T597 592T607 578T614 565T618 554L621 548Q626 530 626 497Q626 447 613 419Q578 348 473 326L455 321Q462 310 473 292T517 226T578 141T637 72T686 35Q705 30 705 16Q705 7 693 -1H510Q503 6 404 159L306 310H268V183Q270 67 271 59Q274 42 291 38Q295 37 319 35Q344 35 353 28Q362 17 353 3L346 -1H28Q16 5 16 16Q16 35 55 35Q96 38 101 52Q106 60 106 341T101 632Q95 645 55 648Q17 648 17 665ZM241 35Q238 42 237 45T235 78T233 163T233 337V621L237 635L244 648H133Q136 641 137 638T139 603T141 517T141 341Q141 131 140 89T134 37Q133 36 133 35H241ZM457 496Q457 540 449 570T425 615T400 634T377 643Q374 643 339 648Q300 648 281 635Q271 628 270 610T268 481V346H284Q327 346 375 352Q421 364 439 392T457 496ZM492 537T492 496T488 427T478 389T469 371T464 361Q464 360 465 360Q469 360 497 370Q593 400 593 495Q593 592 477 630L457 637L461 626Q474 611 488 561Q492 537 492 496ZM464 243Q411 317 410 317Q404 317 401 315Q384 315 370 312H346L526 35H619L606 50Q553 109 464 243Z"></path><path stroke-width="0" id="E1159-MJMATHI-48" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E1159-MJMAIN-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path stroke-width="0" id="E1159-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E1159-MJMAIN-D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z"></path><path stroke-width="0" id="E1159-MJMATHI-57" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path stroke-width="0" id="E1159-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path stroke-width="0" id="E1159-MJMATHI-46" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1159-MJMATHI-43" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1159-MJMATHI-6C" x="1093" y="513"></use><use xlink:href="#E1159-MJMAIN-2208" x="1362" y="0"></use><g transform="translate(2306,0)"><use xlink:href="#E1159-MJAMS-52" x="0" y="0"></use><g transform="translate(722,409)"><use transform="scale(0.707)" xlink:href="#E1159-MJMATHI-48" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1159-MJMAIN-2F" x="888" y="0"></use><g transform="translate(981,0)"><use transform="scale(0.707)" xlink:href="#E1159-MJMAIN-32" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E1159-MJMATHI-6C" x="707" y="555"></use></g><use transform="scale(0.707)" xlink:href="#E1159-MJMAIN-D7" x="2198" y="0"></use><use transform="scale(0.707)" xlink:href="#E1159-MJMATHI-57" x="2976" y="0"></use><use transform="scale(0.707)" xlink:href="#E1159-MJMAIN-2F" x="4024" y="0"></use><g transform="translate(3199,0)"><use transform="scale(0.707)" xlink:href="#E1159-MJMAIN-32" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E1159-MJMATHI-6C" x="707" y="555"></use></g><use transform="scale(0.707)" xlink:href="#E1159-MJMAIN-D7" x="5335" y="0"></use><use transform="scale(0.707)" xlink:href="#E1159-MJMATHI-4D" x="6113" y="0"></use><use transform="scale(0.707)" xlink:href="#E1159-MJMAIN-D7" x="7164" y="0"></use><use transform="scale(0.707)" xlink:href="#E1159-MJMATHI-46" x="7942" y="0"></use></g></g></g></svg></span><script type="math/tex">C^l \in \R^{H/2^l\times W/2^l\times M \times F}</script><span>. The cost volume pyramid is thus </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="7.661ex" height="3.044ex" viewBox="0 -906.7 3298.7 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E1170-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E1170-MJMATHI-43" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q484 659 454 652T382 628T299 572T226 479Q194 422 175 346T156 222Q156 108 232 58Q280 24 350 24Q441 24 512 92T606 240Q610 253 612 255T628 257Q648 257 648 248Q648 243 647 239Q618 132 523 55T319 -22Q206 -22 128 53T50 252Z"></path><path stroke-width="0" id="E1170-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1170-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path><path stroke-width="0" id="E1170-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E1170-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1170-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1170-MJMAIN-7B" x="0" y="0"></use><g transform="translate(500,0)"><use xlink:href="#E1170-MJMATHI-43" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1170-MJMATHI-6C" x="1093" y="513"></use></g><g transform="translate(1584,0)"><use xlink:href="#E1170-MJMAIN-7D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1170-MJMATHI-4C" x="707" y="489"></use><g transform="translate(500,-327)"><use transform="scale(0.707)" xlink:href="#E1170-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1170-MJMAIN-3D" x="298" y="0"></use><use transform="scale(0.707)" xlink:href="#E1170-MJMAIN-30" x="1076" y="0"></use></g></g></g></svg></span><script type="math/tex">\{C^l\}^L_{l=0}</script></p><h2 id='depth-map-estimator'><span>Depth map estimator</span></h2><p><span>Given the constructed cost volume at level </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.692ex" height="1.994ex" viewBox="0 -755.9 298 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1023-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1023-MJMATHI-6C" x="0" y="0"></use></g></svg></span><script type="math/tex">l</script><span>, we need to estimate the depth map at level </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.692ex" height="1.994ex" viewBox="0 -755.9 298 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1023-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1023-MJMATHI-6C" x="0" y="0"></use></g></svg></span><script type="math/tex">l</script><span> which will be further passed down to level </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.693ex" height="2.11ex" viewBox="0 -755.9 2020.4 908.7" role="img" focusable="false" style="vertical-align: -0.355ex;"><defs><path stroke-width="0" id="E1167-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1167-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E1167-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1167-MJMATHI-6C" x="0" y="0"></use><use xlink:href="#E1167-MJMAIN-2212" x="520" y="0"></use><use xlink:href="#E1167-MJMAIN-31" x="1520" y="0"></use></g></svg></span><script type="math/tex">l-1</script><span> as its initial depth estimation. The estimation of depth map from cost volume is achieved by applying a 3D convolution network to aggregate context information and output probability volumes </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="7.685ex" height="3.044ex" viewBox="0 -906.7 3308.9 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E1168-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E1168-MJMATHI-50" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z"></path><path stroke-width="0" id="E1168-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1168-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path><path stroke-width="0" id="E1168-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E1168-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1168-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1168-MJMAIN-7B" x="0" y="0"></use><g transform="translate(500,0)"><use xlink:href="#E1168-MJMATHI-50" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1168-MJMATHI-6C" x="1108" y="513"></use></g><g transform="translate(1594,0)"><use xlink:href="#E1168-MJMAIN-7D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1168-MJMATHI-4C" x="707" y="489"></use><g transform="translate(500,-327)"><use transform="scale(0.707)" xlink:href="#E1168-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1168-MJMAIN-3D" x="298" y="0"></use><use transform="scale(0.707)" xlink:href="#E1168-MJMAIN-30" x="1076" y="0"></use></g></g></g></svg></span><script type="math/tex">\{P^l\}^L_{l=0}</script><span>, where </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="19.057ex" height="2.811ex" viewBox="0 -1107.7 8205 1210.2" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1169-MJMATHI-50" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z"></path><path stroke-width="0" id="E1169-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1169-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E1169-MJAMS-52" d="M17 665Q17 672 28 683H221Q415 681 439 677Q461 673 481 667T516 654T544 639T566 623T584 607T597 592T607 578T614 565T618 554L621 548Q626 530 626 497Q626 447 613 419Q578 348 473 326L455 321Q462 310 473 292T517 226T578 141T637 72T686 35Q705 30 705 16Q705 7 693 -1H510Q503 6 404 159L306 310H268V183Q270 67 271 59Q274 42 291 38Q295 37 319 35Q344 35 353 28Q362 17 353 3L346 -1H28Q16 5 16 16Q16 35 55 35Q96 38 101 52Q106 60 106 341T101 632Q95 645 55 648Q17 648 17 665ZM241 35Q238 42 237 45T235 78T233 163T233 337V621L237 635L244 648H133Q136 641 137 638T139 603T141 517T141 341Q141 131 140 89T134 37Q133 36 133 35H241ZM457 496Q457 540 449 570T425 615T400 634T377 643Q374 643 339 648Q300 648 281 635Q271 628 270 610T268 481V346H284Q327 346 375 352Q421 364 439 392T457 496ZM492 537T492 496T488 427T478 389T469 371T464 361Q464 360 465 360Q469 360 497 370Q593 400 593 495Q593 592 477 630L457 637L461 626Q474 611 488 561Q492 537 492 496ZM464 243Q411 317 410 317Q404 317 401 315Q384 315 370 312H346L526 35H619L606 50Q553 109 464 243Z"></path><path stroke-width="0" id="E1169-MJMATHI-48" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E1169-MJMAIN-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path stroke-width="0" id="E1169-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E1169-MJMAIN-D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z"></path><path stroke-width="0" id="E1169-MJMATHI-57" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path stroke-width="0" id="E1169-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1169-MJMATHI-50" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1169-MJMATHI-6C" x="1108" y="513"></use><use xlink:href="#E1169-MJMAIN-2208" x="1372" y="0"></use><g transform="translate(2317,0)"><use xlink:href="#E1169-MJAMS-52" x="0" y="0"></use><g transform="translate(722,409)"><use transform="scale(0.707)" xlink:href="#E1169-MJMATHI-48" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1169-MJMAIN-2F" x="888" y="0"></use><g transform="translate(981,0)"><use transform="scale(0.707)" xlink:href="#E1169-MJMAIN-32" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E1169-MJMATHI-6C" x="707" y="555"></use></g><use transform="scale(0.707)" xlink:href="#E1169-MJMAIN-D7" x="2198" y="0"></use><use transform="scale(0.707)" xlink:href="#E1169-MJMATHI-57" x="2976" y="0"></use><use transform="scale(0.707)" xlink:href="#E1169-MJMAIN-2F" x="4024" y="0"></use><g transform="translate(3199,0)"><use transform="scale(0.707)" xlink:href="#E1169-MJMAIN-32" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E1169-MJMATHI-6C" x="707" y="555"></use></g><use transform="scale(0.707)" xlink:href="#E1169-MJMAIN-D7" x="5335" y="0"></use><use transform="scale(0.707)" xlink:href="#E1169-MJMATHI-4D" x="6113" y="0"></use></g></g></g></svg></span><script type="math/tex">P^l \in \R ^{H/2^l\times W/2^l\times M}</script><span>.</span></p><p><span>The resulting depth map is simply a </span><strong><span>weighted sum</span></strong><span> of each channels of the probability volume, whereas the weights are the corresponding depth hypotheses. </span></p><p><span>At the coarsest level </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.582ex" height="1.994ex" viewBox="0 -755.9 681 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1171-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1171-MJMATHI-4C" x="0" y="0"></use></g></svg></span><script type="math/tex">L</script><span>, the depth estimate for each pixel </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.259ex" height="1.76ex" viewBox="-39 -504.6 542 757.9" role="img" focusable="false" style="vertical-align: -0.588ex; margin-left: -0.091ex;"><defs><path stroke-width="0" id="E395-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E395-MJMATHI-70" x="0" y="0"></use></g></svg></span><script type="math/tex">p</script><span> is computed as:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n1763" cid="n1763" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-1451-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="20.966ex" height="7.19ex" viewBox="0 -1836 9026.9 3095.6" role="img" focusable="false" style="vertical-align: -2.926ex; max-width: 100%;"><defs><path stroke-width="0" id="E1948-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path><path stroke-width="0" id="E1948-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E1948-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1948-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1948-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1948-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1948-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E1948-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1948-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E1948-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path stroke-width="0" id="E1948-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E1948-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1948-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E1948-MJMATHI-50" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1948-MJMATHI-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1948-MJMATHI-4C" x="1170" y="583"></use><use xlink:href="#E1948-MJMAIN-28" x="1409" y="0"></use><use xlink:href="#E1948-MJMATHI-70" x="1798" y="0"></use><use xlink:href="#E1948-MJMAIN-29" x="2301" y="0"></use><use xlink:href="#E1948-MJMAIN-3D" x="2968" y="0"></use><g transform="translate(4024,0)"><use xlink:href="#E1948-MJSZ2-2211" x="101" y="0"></use><g transform="translate(61,-1088)"><use transform="scale(0.707)" xlink:href="#E1948-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1948-MJMAIN-3D" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E1948-MJMAIN-30" x="1655" y="0"></use></g><g transform="translate(0,1150)"><use transform="scale(0.707)" xlink:href="#E1948-MJMATHI-4D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1948-MJMAIN-2212" x="1051" y="0"></use><use transform="scale(0.707)" xlink:href="#E1948-MJMAIN-31" x="1829" y="0"></use></g></g><use xlink:href="#E1948-MJMATHI-64" x="5837" y="0"></use><g transform="translate(6360,0)"><use xlink:href="#E1948-MJMATHI-50" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1948-MJMATHI-4C" x="1108" y="489"></use><use transform="scale(0.707)" xlink:href="#E1948-MJMATHI-70" x="907" y="-211"></use></g><use xlink:href="#E1948-MJMAIN-28" x="7725" y="0"></use><use xlink:href="#E1948-MJMATHI-64" x="8114" y="0"></use><use xlink:href="#E1948-MJMAIN-29" x="8637" y="0"></use></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-1451">D^L(p) = \sum_{m=0}^{M-1}dP_p^L(d)</script></div></div><p><span>where </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="30.997ex" height="2.577ex" viewBox="0 -806.1 13345.9 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E1250-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E1250-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1250-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1250-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1250-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1250-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E1250-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1250-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E1250-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E1250-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E1250-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1250-MJMAIN-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path stroke-width="0" id="E1250-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1250-MJMATHI-64" x="0" y="0"></use><use xlink:href="#E1250-MJMAIN-3D" x="800" y="0"></use><g transform="translate(1856,0)"><use xlink:href="#E1250-MJMATHI-64" x="0" y="0"></use><g transform="translate(520,-150)"><use transform="scale(0.707)" xlink:href="#E1250-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1250-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E1250-MJMATHI-6E" x="1223" y="0"></use></g></g><use xlink:href="#E1250-MJMAIN-2B" x="3987" y="0"></use><use xlink:href="#E1250-MJMATHI-6D" x="4988" y="0"></use><use xlink:href="#E1250-MJMAIN-28" x="5866" y="0"></use><g transform="translate(6255,0)"><use xlink:href="#E1250-MJMATHI-64" x="0" y="0"></use><g transform="translate(520,-150)"><use transform="scale(0.707)" xlink:href="#E1250-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1250-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E1250-MJMATHI-78" x="1406" y="0"></use></g></g><use xlink:href="#E1250-MJMAIN-2212" x="8496" y="0"></use><g transform="translate(9496,0)"><use xlink:href="#E1250-MJMATHI-64" x="0" y="0"></use><g transform="translate(520,-150)"><use transform="scale(0.707)" xlink:href="#E1250-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1250-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E1250-MJMATHI-6E" x="1223" y="0"></use></g></g><use xlink:href="#E1250-MJMAIN-29" x="11405" y="0"></use><use xlink:href="#E1250-MJMAIN-2F" x="11794" y="0"></use><use xlink:href="#E1250-MJMATHI-4D" x="12294" y="0"></use></g></svg></span><script type="math/tex">d=d_{min}+m(d_{max}-d_{min})/M</script><span> is the sampled depth.</span></p><p><span>For lower levels at the pyramid, assume </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="11.443ex" height="2.928ex" viewBox="0 -906.7 4926.9 1260.5" role="img" focusable="false" style="vertical-align: -0.822ex;"><defs><path stroke-width="0" id="E1777-MJMATHI-72" d="M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1777-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1777-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1777-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1777-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path stroke-width="0" id="E1777-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E1777-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1777-MJMATHI-72" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1777-MJMATHI-70" x="637" y="-213"></use><use xlink:href="#E1777-MJMAIN-3D" x="1184" y="0"></use><use xlink:href="#E1777-MJMATHI-6D" x="2240" y="0"></use><use xlink:href="#E1777-MJMAIN-394" x="3118" y="0"></use><g transform="translate(3951,0)"><use xlink:href="#E1777-MJMATHI-64" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1777-MJMATHI-6C" x="740" y="499"></use><use transform="scale(0.707)" xlink:href="#E1777-MJMATHI-70" x="735" y="-211"></use></g></g></svg></span><script type="math/tex">r_p=m\Delta d_p^l</script><span>denotes the depth residual hypothesis, the depth estimate is given by:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n1766" cid="n1766" mdtype="math_block"><div class="md-rawblock-container md-math-container" contenteditable="false" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-1461-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="32.621ex" height="8.042ex" viewBox="0 -1940.8 14045.2 3462.4" role="img" focusable="false" style="vertical-align: -3.534ex; max-width: 100%;"><defs><path stroke-width="0" id="E1961-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path><path stroke-width="0" id="E1961-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1961-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1961-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1961-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1961-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1961-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E1961-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1961-MJMAIN-2191" d="M27 414Q17 414 17 433Q17 437 17 439T17 444T19 447T20 450T22 452T26 453T30 454T36 456Q80 467 120 494T180 549Q227 607 238 678Q240 694 251 694Q259 694 261 684Q261 677 265 659T284 608T320 549Q340 525 363 507T405 479T440 463T467 455T479 451Q483 447 483 433Q483 413 472 413Q467 413 458 416Q342 448 277 545L270 555V-179Q262 -193 252 -193H250H248Q236 -193 230 -179V555L223 545Q192 499 146 467T70 424T27 414Z"></path><path stroke-width="0" id="E1961-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E1961-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1961-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E1961-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path stroke-width="0" id="E1961-MJMAIN-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path stroke-width="0" id="E1961-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E1961-MJMATHI-72" d="M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E1961-MJMATHI-50" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1961-MJMATHI-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMATHI-6C" x="1170" y="583"></use><use xlink:href="#E1961-MJMAIN-28" x="1138" y="0"></use><use xlink:href="#E1961-MJMATHI-70" x="1527" y="0"></use><use xlink:href="#E1961-MJMAIN-29" x="2030" y="0"></use><use xlink:href="#E1961-MJMAIN-3D" x="2697" y="0"></use><g transform="translate(3753,0)"><use xlink:href="#E1961-MJMATHI-44" x="0" y="0"></use><g transform="translate(828,402)"><use transform="scale(0.707)" xlink:href="#E1961-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMAIN-2B" x="298" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMAIN-31" x="1076" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E1961-MJMAIN-2191" x="1170" y="-462"></use></g><use xlink:href="#E1961-MJMAIN-2B" x="6017" y="0"></use><g transform="translate(7018,0)"><use xlink:href="#E1961-MJSZ2-2211" x="863" y="0"></use><g transform="translate(0,-1147)"><use transform="scale(0.707)" xlink:href="#E1961-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMAIN-3D" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMAIN-2212" x="1655" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMATHI-4D" x="2434" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMAIN-2F" x="3484" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMAIN-32" x="3985" y="0"></use></g><g transform="translate(408,1237)"><use transform="scale(0.707)" xlink:href="#E1961-MJMATHI-4D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMAIN-2F" x="1051" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMAIN-32" x="1551" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMAIN-2212" x="2051" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMAIN-31" x="2829" y="0"></use></g></g><g transform="translate(10356,0)"><use xlink:href="#E1961-MJMATHI-72" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMATHI-70" x="637" y="-213"></use></g><g transform="translate(11262,0)"><use xlink:href="#E1961-MJMATHI-50" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMATHI-6C" x="1108" y="499"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMATHI-70" x="907" y="-211"></use></g><use xlink:href="#E1961-MJMAIN-28" x="12360" y="0"></use><g transform="translate(12749,0)"><use xlink:href="#E1961-MJMATHI-72" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1961-MJMATHI-70" x="637" y="-213"></use></g><use xlink:href="#E1961-MJMAIN-29" x="13656" y="0"></use></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-1461">D^l(p)=D^{l+1}_{\uparrow}+\sum_{m=-M/2}^{M/2-1}r_pP_p^l(r_p)</script></div></div><p><span>where </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="22.957ex" height="2.577ex" viewBox="0 -806.1 9884.1 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E1809-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1809-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E1809-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E1809-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E1809-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E1809-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E1809-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E1809-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E1809-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E1809-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E1809-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1809-MJMATHI-6C" x="0" y="0"></use><use xlink:href="#E1809-MJMAIN-2208" x="575" y="0"></use><use xlink:href="#E1809-MJMAIN-7B" x="1520" y="0"></use><use xlink:href="#E1809-MJMATHI-4C" x="2020" y="0"></use><use xlink:href="#E1809-MJMAIN-2212" x="2923" y="0"></use><use xlink:href="#E1809-MJMAIN-31" x="3924" y="0"></use><use xlink:href="#E1809-MJMAIN-2C" x="4424" y="0"></use><use xlink:href="#E1809-MJMATHI-4C" x="4868" y="0"></use><use xlink:href="#E1809-MJMAIN-2212" x="5771" y="0"></use><use xlink:href="#E1809-MJMAIN-32" x="6772" y="0"></use><use xlink:href="#E1809-MJMAIN-2C" x="7272" y="0"></use><use xlink:href="#E1809-MJMAIN-2E" x="7716" y="0"></use><use xlink:href="#E1809-MJMAIN-2E" x="8161" y="0"></use><g transform="translate(8606,0)"><use xlink:href="#E1809-MJMAIN-2E"></use><use xlink:href="#E1809-MJMAIN-30" x="278" y="0"></use></g><use xlink:href="#E1809-MJMAIN-7D" x="9384" y="0"></use></g></svg></span><script type="math/tex">l \in \{L-1, L-2,...0\}</script></p><p><img src="imgs/fig12.png" referrerpolicy="no-referrer" alt="fig12"></p><h2 id='loss-function'><span>Loss function</span></h2><p><span>The loss function of the network is simply a </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.746ex" height="2.227ex" viewBox="0 -755.9 751.6 958.9" role="img" focusable="false" style="vertical-align: -0.472ex;"><defs><path stroke-width="0" id="E1831-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1831-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1831-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1831-MJMAIN-31" x="421" y="-213"></use></g></svg></span><script type="math/tex">l_1</script><span> norm measuring the absolute difference between the ground truth and the estimated depth. Note that the ground truth depth map is also down-sampled to the corresponding level. For each training sample, the loss is:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n1771" cid="n1771" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-1453-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="35.139ex" height="7.555ex" viewBox="0 -1836 15129.2 3252.8" role="img" focusable="false" style="vertical-align: -3.291ex; max-width: 100%;" class=""><defs><path stroke-width="0" id="E1950-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E1950-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E1950-MJMATHI-73" d="M131 289Q131 321 147 354T203 415T300 442Q362 442 390 415T419 355Q419 323 402 308T364 292Q351 292 340 300T328 326Q328 342 337 354T354 372T367 378Q368 378 368 379Q368 382 361 388T336 399T297 405Q249 405 227 379T204 326Q204 301 223 291T278 274T330 259Q396 230 396 163Q396 135 385 107T352 51T289 7T195 -10Q118 -10 86 19T53 87Q53 126 74 143T118 160Q133 160 146 151T160 120Q160 94 142 76T111 58Q109 57 108 57T107 55Q108 52 115 47T146 34T201 27Q237 27 263 38T301 66T318 97T323 122Q323 150 302 164T254 181T195 196T148 231Q131 256 131 289Z"></path><path stroke-width="0" id="E1950-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E1950-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E1950-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E1950-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E1950-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E1950-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E1950-MJMAIN-3A9" d="M55 454Q55 503 75 546T127 617T197 665T272 695T337 704H352Q396 704 404 703Q527 687 596 615T666 454Q666 392 635 330T559 200T499 83V80H543Q589 81 600 83T617 93Q622 102 629 135T636 172L637 177H677V175L660 89Q645 3 644 2V0H552H488Q461 0 456 3T451 20Q451 89 499 235T548 455Q548 512 530 555T483 622T424 656T361 668Q332 668 303 658T243 626T193 560T174 456Q174 380 222 233T270 20Q270 7 263 0H77V2Q76 3 61 89L44 175V177H84L85 172Q85 171 88 155T96 119T104 93Q109 86 120 84T178 80H222V83Q206 132 162 199T87 329T55 454Z"></path><path stroke-width="0" id="E1950-MJMAIN-7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z"></path><path stroke-width="0" id="E1950-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path><path stroke-width="0" id="E1950-MJMATHI-47" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z"></path><path stroke-width="0" id="E1950-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E1950-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E1950-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E1950-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E1950-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1950-MJMATHI-4C" x="0" y="0"></use><use xlink:href="#E1950-MJMATHI-6F" x="681" y="0"></use><use xlink:href="#E1950-MJMATHI-73" x="1166" y="0"></use><use xlink:href="#E1950-MJMATHI-73" x="1635" y="0"></use><use xlink:href="#E1950-MJMAIN-3D" x="2381" y="0"></use><g transform="translate(3437,0)"><use xlink:href="#E1950-MJSZ2-2211" x="0" y="0"></use><g transform="translate(164,-1109)"><use transform="scale(0.707)" xlink:href="#E1950-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1950-MJMAIN-3D" x="298" y="0"></use><use transform="scale(0.707)" xlink:href="#E1950-MJMAIN-30" x="1076" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E1950-MJMATHI-6C" x="872" y="1626"></use></g><g transform="translate(5048,0)"><use xlink:href="#E1950-MJSZ2-2211" x="0" y="0"></use><g transform="translate(53,-1116)"><use transform="scale(0.707)" xlink:href="#E1950-MJMATHI-70" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1950-MJMAIN-2208" x="503" y="0"></use><use transform="scale(0.707)" xlink:href="#E1950-MJMAIN-3A9" x="1170" y="0"></use></g></g><use xlink:href="#E1950-MJMAIN-7C" x="6658" y="0"></use><use xlink:href="#E1950-MJMAIN-7C" x="6936" y="0"></use><g transform="translate(7214,0)"><use xlink:href="#E1950-MJMATHI-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1950-MJMATHI-6C" x="1170" y="499"></use><g transform="translate(828,-335)"><use transform="scale(0.707)" xlink:href="#E1950-MJMATHI-47" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1950-MJMATHI-54" x="786" y="0"></use></g></g><use xlink:href="#E1950-MJMAIN-28" x="9196" y="0"></use><use xlink:href="#E1950-MJMATHI-70" x="9585" y="0"></use><use xlink:href="#E1950-MJMAIN-29" x="10088" y="0"></use><use xlink:href="#E1950-MJMAIN-2212" x="10699" y="0"></use><g transform="translate(11699,0)"><use xlink:href="#E1950-MJMATHI-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1950-MJMATHI-6C" x="1170" y="583"></use></g><use xlink:href="#E1950-MJMAIN-28" x="12838" y="0"></use><use xlink:href="#E1950-MJMATHI-70" x="13227" y="0"></use><use xlink:href="#E1950-MJMAIN-29" x="13730" y="0"></use><use xlink:href="#E1950-MJMAIN-7C" x="14119" y="0"></use><g transform="translate(14397,0)"><use xlink:href="#E1950-MJMAIN-7C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E1950-MJMAIN-31" x="393" y="-403"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-1453">Loss = \sum_{l=0}^l\sum_{p \in \Omega} ||D^l_{GT}(p)-D^l(p)||_1</script></div></div><p><span>where </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.677ex" height="1.994ex" viewBox="0 -806.1 722 858.4" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E1910-MJMAIN-3A9" d="M55 454Q55 503 75 546T127 617T197 665T272 695T337 704H352Q396 704 404 703Q527 687 596 615T666 454Q666 392 635 330T559 200T499 83V80H543Q589 81 600 83T617 93Q622 102 629 135T636 172L637 177H677V175L660 89Q645 3 644 2V0H552H488Q461 0 456 3T451 20Q451 89 499 235T548 455Q548 512 530 555T483 622T424 656T361 668Q332 668 303 658T243 626T193 560T174 456Q174 380 222 233T270 20Q270 7 263 0H77V2Q76 3 61 89L44 175V177H84L85 172Q85 171 88 155T96 119T104 93Q109 86 120 84T178 80H222V83Q206 132 162 199T87 329T55 454Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1910-MJMAIN-3A9" x="0" y="0"></use></g></svg></span><script type="math/tex">\Omega</script><span> is the set of valid pixels with ground truth measurements.</span></p><h2 id='sum-up'><span>Sum up</span></h2><p><span>The entire network structure is shown below. Reference and source images are first down-sampled to form an image pyramid. We apply feature extraction network to all levels and images to extract feature maps. We then build the cost volume pyramid in a coarse-to-fine manner. Specifically, we start with the construction of a cost volume corresponding to coarsest image resolution followed by building partial cost volumes iteratively for depth residual estimation in order to achieve depth map for the reference image.</span></p><p><img src="imgs/fig13.png" referrerpolicy="no-referrer" alt="fig13"></p><h1 id='experiments'><span>Experiments</span></h1><h2 id='dateset'><span>Dateset</span></h2><p><a href='https://roboimagedata.compute.dtu.dk/'><strong><span>DTU Dataset</span></strong></a><strong></strong><span> is used for train and test. DTU dataset includes table top objects in laboratory lighting conditions.</span></p><p><img src="imgs/fig14.png" referrerpolicy="no-referrer" alt="fig14"></p><p align="center"> DTU Dataset </p><p><a href='https://www.tanksandtemples.org/'><strong><span>Tanks and Temples Dataset</span></strong></a><strong></strong><span> is only used for test. DTU dataset includes table top objects in laboratory conditions. This dataset includes indoor and outdoor scenes under realistic lighting conditions.</span></p><p><img src="imgs/fig15.png" alt="fig15" style="zoom:65%;" /></p><p align="center"> Tanks and Temples </p><h2 id='metrics'><span>Metrics</span></h2><p><em><span>Accuracy</span></em><span>, </span><em><span>completeness</span></em><span> and </span><em><span>overall score</span></em><span> are used to evaluate the quality of reconstructed point clouds.</span></p><p><span>Denote the ground truth model as </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.826ex" height="2.11ex" viewBox="0 -806.1 786 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1936-MJMATHI-47" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1936-MJMATHI-47" x="0" y="0"></use></g></svg></span><script type="math/tex">G</script><span> and the reconstructed model as </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.763ex" height="1.994ex" viewBox="0 -755.9 759 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E107-MJMATHI-52" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E107-MJMATHI-52" x="0" y="0"></use></g></svg></span><script type="math/tex">R</script><span>. </span></p><ul><li><p><span>Accuracy is the distance from </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.763ex" height="1.994ex" viewBox="0 -755.9 759 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E107-MJMATHI-52" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E107-MJMATHI-52" x="0" y="0"></use></g></svg></span><script type="math/tex">R</script><span> to </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.826ex" height="2.11ex" viewBox="0 -806.1 786 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1936-MJMATHI-47" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1936-MJMATHI-47" x="0" y="0"></use></g></svg></span><script type="math/tex">G</script><span>;</span></p></li><li><p><span>Completeness is the distance from </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.826ex" height="2.11ex" viewBox="0 -806.1 786 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1936-MJMATHI-47" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1936-MJMATHI-47" x="0" y="0"></use></g></svg></span><script type="math/tex">G</script><span> to </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.763ex" height="1.994ex" viewBox="0 -755.9 759 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E107-MJMATHI-52" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E107-MJMATHI-52" x="0" y="0"></use></g></svg></span><script type="math/tex">R</script></p></li><li><p><span>Overall score is the average of accuracy and completeness.</span></p><p><img src="imgs/fig16.png" alt="fig16" style="zoom:70%;" /></p></li></ul><p><span>The names of the metrics are kind of self-explaining. If only accuracy were reported, it would favor algorithms that only include estimated points of high certainty, e.g. high-textured surface parts. On the other hand, if only completeness were reported it would favor algorithms that include everything, regardless of point quality.</span></p><h2 id='qualitative-results'><span>Qualitative results</span></h2><p><img src="imgs/fig17.png" alt="fig17" style="zoom:65%;" /></p><p align="center"> Results on DTU test set. The upper row shows the point clouds and the bottom row shows the normal map corresponding to the orange rectangle. As highlighted in the blue rectangle, the completeness of the proposed method is better than Point-MVSNet. The normal map (orange rectangle) further shows that the proposed method is smoother on surfaces while maintaining more high-frequency details.
</p><p><img src="imgs/fig18.png" alt="fig18" style="zoom:90%;" /></p><p align="center">Point cloud reconstruction on Tanks and Temple dataset. Note that the model has not trained/fine-tuned on this dataset. This result shows that the presented method has a good generalization ability.
</p><p><img src="imgs/fig19.png" alt="fig19" style="zoom:80%;" /></p><p align="center">Intermediate point cloud results. Note that the reconstruction quality improved for every iteration of depth residual refinement.
</p><h2 id='quantitative-results'><span>Quantitative results</span></h2><p><img src="imgs/fig20.png" referrerpolicy="no-referrer" alt="fig20"></p><p align="center">Quantitative results of reconstruction quality on DTU dataset (lower is better). The presented method outperforms all methods on completeness and overall reconstruction quality and achieved seconad best on Accuracy.
</p><p><img src="imgs/fig21.png" referrerpolicy="no-referrer" alt="fig21"></p><p align="center">Comparison of reconstruction quality, GPU memory usage and runtime on DTU dataset for different input sizes. For the same size of depth maps, the proposed method has a performance similar with Point-MVSNet, and is 6 times faster and consumes 6 times smaller GPU memory. For the same size of input images, the proposed method achieves the best reconstruction with the shortest time and a reasonable GPU memory usage.
</p><h1 id='discussion'><span>Discussion</span></h1><p><span>The main contribution of this paper is building a pyramid structure in a coarse-to-fine manner. To be honest, I think the methodology does not has much novelty, since coarse-to-fine manner or the pyramid structure is a common approach (e.g. in optical flow, motion estimation and frame interpolation) to increase speed and reduce memory requirement. If one have read the </span><a href='https://openaccess.thecvf.com/content_ECCV_2018/html/Yao_Yao_MVSNet_Depth_Inference_ECCV_2018_paper.html'><span>MVSNet</span></a><span> paper, one will find that the method in this paper is nothing but a small improvement of the MVSNet. </span></p><p><span>However, the devil is in the details, as the saying goes. Although the basic idea of this paper is straight forward, a lot of implementation details have to be determined carefully to achieve state-of-the-art results. For example, the choice of depth hypotheses number </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.441ex" height="1.877ex" viewBox="0 -755.9 1051 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E154-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E154-MJMATHI-4D" x="0" y="0"></use></g></svg></span><script type="math/tex">M</script><span>, the depth search range, the level </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.582ex" height="1.994ex" viewBox="0 -755.9 681 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E1171-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E1171-MJMATHI-4C" x="0" y="0"></use></g></svg></span><script type="math/tex">L</script><span>, the choice of network architecture and so on, those parameters cannot be chosen arbitrarily. For the chosen of </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.441ex" height="1.877ex" viewBox="0 -755.9 1051 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E154-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E154-MJMATHI-4D" x="0" y="0"></use></g></svg></span><script type="math/tex">M</script><span>, the authors used a "0.5 pixel distance" method to avoid too dense sampling. For the depth search range, a "2 pixel length" method is used to determine a proper search range. Interested readers are referred to the </span><a href='https://openaccess.thecvf.com/content_CVPR_2020/html/Yang_Cost_Volume_Pyramid_Based_Depth_Inference_for_Multi-View_Stereo_CVPR_2020_paper.html'><span>original paper</span></a><span> to get those details.</span></p><p><span>One possible improvement would be to jointly estimate the depth map for both reference image and source images, and output the merged 3D point cloud directly. In this paper, the output is only a depth map for a single image. In some cases, we might want the 3D model of a scene and combining different viewpoints could make the reconstruction more complete.</span></p></div></div>
</body>
</html>