-
Notifications
You must be signed in to change notification settings - Fork 6
/
controlnet.py
457 lines (416 loc) · 18.2 KB
/
controlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
from typing import Any, List, Optional, Tuple
import einops
import torch
import torch as th
import torch.nn as nn
import numpy as np
from tqdm import tqdm
import cv2
from ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from ldm.modules.diffusionmodules.util import noise_like
from einops import rearrange, repeat
from torchvision.utils import make_grid
from ldm.modules.attention import SpatialTransformer
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.util import log_txt_as_img, exists, instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
import k_diffusion.sampling
class ControlledUnetModel(UNetModel):
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, reference_kv:List[List[Tuple[torch.Tensor, torch.Tensor]]] = [], **kwargs):
if control is None :
return super().forward(x, timesteps, context, **kwargs)
hs = []
kv_hists = []
with torch.no_grad():
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.input_blocks:
#print(type(module))
h, kv_hists_cur = module(h, emb, context, reference_kv = reference_kv)
#print('reference_kv[0].len()', len(reference_kv[0]) if reference_kv else 'N/A')
kv_hists.extend(kv_hists_cur)
hs.append(h)
#print('self.middle_block', type(self.middle_block))
h, kv_hists_cur = self.middle_block(h, emb, context, reference_kv = reference_kv)
#print('reference_kv[0].len()', len(reference_kv[0]) if reference_kv else 'N/A')
kv_hists.extend(kv_hists_cur)
h += control.pop()
for i, module in enumerate(self.output_blocks):
if only_mid_control:
h = torch.cat([h, hs.pop()], dim=1)
else:
h = torch.cat([h, hs.pop() + control.pop()], dim=1)
h, kv_hists_cur = module(h, emb, context, reference_kv = reference_kv)
#print('reference_kv[0].len()', len(reference_kv[0]) if reference_kv else 'N/A')
kv_hists.extend(kv_hists_cur)
h = h.type(x.dtype)
return self.out(h), kv_hists
class ControlNet(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
hint_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.dims = dims
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
self.input_hint_block = TimestepEmbedSequential(
conv_nd(dims, hint_channels, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 32, 32, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 96, 96, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
nn.SiLU(),
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self.zero_convs.append(self.make_zero_conv(ch))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
self.zero_convs.append(self.make_zero_conv(ch))
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self.middle_block_out = self.make_zero_conv(ch)
self._feature_size += ch
def make_zero_conv(self, channels):
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
def forward(self, x, hint, timesteps, context, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
guided_hint, _ = self.input_hint_block(hint, emb, context)
outs = []
h = x.type(self.dtype)
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h, _ = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h, _ = module(h, emb, context)
outs.append(zero_conv(h, emb, context)[0])
h, _ = self.middle_block(h, emb, context)
outs.append(self.middle_block_out(h, emb, context)[0])
return outs
from dataclasses import dataclass
@dataclass
class SingleControlNet :
weight: float
model: str
args: dict
condition: np.ndarray
guidance_start: float = 0
guidance_end: float = 1
result: Optional[Any] = None
net: Optional[ControlNet] = None
LOADED_CNETS = {}
from controlnet_models.hed import apply_hed
MODEL_HED = None
def extract_control(x_noisy, t, cond_txt, condition_img, net: ControlNet, model: str, control_args: dict) :
if model == 'canny' :
edges = cv2.Canny(condition_img, control_args['low_threshold'], control_args['high_threshold'])
#cv2.imwrite('cnet_canny.png', edges)
control = einops.repeat(torch.from_numpy(edges), 'h w -> n c h w', n = 2, c = 3).cuda().float() / 255.0
return net(x=x_noisy, hint=control, timesteps=t, context=cond_txt)
elif model == 'hed' :
edges = apply_hed(condition_img)
#cv2.imwrite('cnet_hed.png', edges)
control = einops.repeat(torch.from_numpy(edges), 'h w -> n c h w', n = 2, c = 3).cuda().float() / 255.0
return net(x=x_noisy, hint=control, timesteps=t, context=cond_txt)
elif model == 'depth' :
pass
elif model == 'mlsd' :
pass
elif model == 'scribble' :
pass
elif model == 'inpaint' :
detected_mask = control_args['mask']
H, W, _ = condition_img.shape
detected_map = condition_img.astype(np.float32).copy()
detected_map[detected_mask > 127] = -255.0 # use -1 as inpaint value
cv2.imwrite('cnet_inpaint.png', np.clip(detected_map, 0, 255).astype(np.uint8))
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(1)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
return net(x=x_noisy, hint=control, timesteps=t, context=cond_txt)
import safetensors.torch
def get_controlnet_instance(model: str) :
if model in LOADED_CNETS :
return LOADED_CNETS[model]
cnet = ControlNet(
image_size= 32,
in_channels= 4,
hint_channels= 3,
model_channels= 320,
attention_resolutions= [ 4, 2, 1 ],
num_res_blocks= 2,
channel_mult= [ 1, 2, 4, 4 ],
num_heads= 8,
use_spatial_transformer= True,
transformer_depth= 1,
context_dim= 768,
use_checkpoint= True,
legacy= False
).cuda()
if model == 'canny' :
# sd = safetensors.torch.load_file('controlnet_models/control_canny-fp16.safetensors')
# cnet.load_state_dict(sd)
sd = torch.load('controlnet_models/control_v11p_sd15_canny.pth')
sd2 = {}
for k in sd.keys() :
k = k.replace('control_model.', '')
sd2[k] = sd['control_model.' + k]
cnet.load_state_dict(sd2)
if model == 'hed' :
sd = safetensors.torch.load_file('controlnet_models/control_hed-fp16.safetensors')
cnet.load_state_dict(sd)
if model == 'inpaint' :
sd = torch.load('controlnet_models/control_v11p_sd15_inpaint.pth')
sd2 = {}
for k in sd.keys() :
k = k.replace('control_model.', '')
sd2[k] = sd['control_model.' + k]
cnet.load_state_dict(sd2)
return cnet
def apply_multi_controlnet(x_noisy, t, cond_txt, denoise_percentage, control_nets: List[SingleControlNet]) :
for c in control_nets :
if c.net is None :
c.net = get_controlnet_instance(c.model)
x = extract_control(x_noisy, t, cond_txt, c.condition, c.net, c.model, c.args)
if isinstance(x, tuple) :
print('x is tuple')
c.result = x
controls = []
for r in control_nets[0].result :
weight = control_nets[0].weight
if denoise_percentage < control_nets[0].guidance_start or denoise_percentage > control_nets[0].guidance_end :
weight = 0
controls.append(r * weight)
for cnet in control_nets[1:] :
for i, r in enumerate(cnet.result) :
weight = cnet.weight
if denoise_percentage < cnet.guidance_start or denoise_percentage > cnet.guidance_end :
weight = 0
controls[i] += r * weight
return controls
def test_load() :
from ldm.util import instantiate_from_config
cnet = ControlNet(
image_size= 32,
in_channels= 4,
hint_channels= 3,
model_channels= 320,
attention_resolutions= [ 4, 2, 1 ],
num_res_blocks= 2,
channel_mult= [ 1, 2, 4, 4 ],
num_heads= 8,
use_spatial_transformer= True,
transformer_depth= 1,
context_dim= 768,
use_checkpoint= True,
legacy= False
)
import safetensors.torch
sd = safetensors.torch.load_file('controlnet_models/control_canny-fp16.safetensors')
cnet.load_state_dict(sd)
if __name__ == '__main__' :
test_load()