-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
486 lines (457 loc) · 26.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
# -*- coding: utf-8 -*-
import codecs
import ast
import argparse
import sys
import re
import pandas as pd
import numpy as np
import VariantAnalysis as va
import VariantPlots as vp
# Report the graph usage to the commandline
def graph_args_usage():
print('\n')
print("GRAPH USAGE: The following are permitted arguments for running the 'graph' analysis option")
print('\n')
print("(1) python main.py --filename [Emerging Variants Report] --analysis graph")
print('---')
print("(2) python main.py --filename [Emerging Variants Report] --analysis graph --lineage [PANGO Lineage]")
print("---")
print("(3) python main.py --filename [Emerging Variants Report] --analysis graph --lineage_file [Lineages TXT File]")
print('---')
print("(4) python main.py --filename [Emerging Variants Report] --analysis graph --country [Country]")
print('---')
print("(5) python main.py --filename [Emerging Variants Report] --analysis graph --lineage_file [Lineages TXT File] --country [Country]")
print('---')
print("(6) python main.py --filename [Emerging Variants Report] --analysis graph --lineage [PANGO Lineage] --country_file [Country TXT File]")
print("---")
print("(7) python main.py --filename [Emerging Variants Report] --analysis graph --[PANGO/WHO/covariants] [PANGO Lineage/WHO Label/Covariants TXT File]")
print('---')
print("(8) python main.py --filename [Emerging Variants Report] --analysis graph --[PANGO/WHO/covariants] [PANGO Lineage/WHO Label/Covariants TXT File] --country [Country]")
print('---')
print("(9) python main.py --filename [Emerging Variants Report] --analysis graph --mutations [Mutations TXT File]")
print('---')
print("(10) python main.py --filename [Emerging Variants Report] --analysis graph --domain [NTD/RBD/Spike/Other]")
print('---')
print("(11) python [Everything in (9) or (10)] --country [Country]")
print('---')
print("NOTE: Options 1-6 are for graphing PANGO Lineage trends, 7-9 is for graphing covariant trends, and 10-11 is for point mutation trends")
print('\n')
print("See ReadMe.md for details on graph analysis.")
print('\n')
# Report the program usage to the command line
def program_usage():
print('\n')
print("RANKING USAGE: Commandline must have the minimum arguments: python main.py --filename [Emerging Variants Report] --analysis [Analysis Option]")
print('\n')
print("ANALYSIS OPTION: The following are arguments permitted after the '--analysis' argument")
print('\n')
print("(1) lineage_ranking: Rank PANGO lineages by their Emergence Score within entire Emerging Variants Report. These are 'growing' lineages")
print("(a) python main.py --filename [Emerging Variants Report] --analysis lineage_ranking")
print("(b) python [Everything in (a)] --interval [Interval]")
print("(c) python [Everything in (a)] --country [Country]")
print("(d) python [Everything in (a)] --interval [Interval] --country [Country]")
print('---')
print("(2) sequence_ranking: Rank covariants within a PANGO Lineage, WHO Label, inputted file, or entire Emerging Variants Report based on the Sequence Prevalence Score")
print("(a) python main.py --filename [Emerging Variants Report] --analysis sequence_ranking")
print("(b) python main.py --filename [Emerging Variants Report] --analysis sequence_ranking --[PANGO/WHO/covariants] [PANGO Lineage/WHO Label/Covariants TXT File]")
print("(c) python [Everything in (a) or (b)] --interval [Interval]")
print("(d) python [Everything in (a) or (b)] --country [Country]")
print("(e) python [Everything in (a) or (b)] --interval [Interval] --country [Country]")
print('---')
print("(3) functional_ranking: Rank covariants within a PANGO Lineage, WHO Label, inputed file, or entire Emerging Variants Report based on the Predicted Functional Impact Score")
print("(a) python main.py --filename [Emerging Variants Report] --analysis functional_ranking")
print("(b) python main.py --filename [Emerging Variants Report] --analysis functional_ranking --[PANGO/WHO/covariants] [PANGO Lineage/WHO Label/Covariants TXT File]")
print("(c) python [Everything in (a) or (b)] --interval [Interval]")
print("(d) python [Everything in (a) or (b)] --country [Country]")
print("(e) python [Everything in (a) or (b)] --interval [Interval] --country [Country]")
print('---')
print("(4) composite_ranking: Rank covariants within a PANGO Lineage, WHO Label, inputted file, or Entire Emerging Variants Report based on the Composite Score")
print("(a) python main.py --filename [Emerging Variants Report] --analysis composite_ranking")
print("(b) python main.py --filename [Emerging Variants Report] --analysis composite_ranking --[PANGO/WHO/covariants] [PANGO Lineage/WHO Label/Covariants TXT File]")
print("(c) python [Everything in (a)] --interval [Interval]")
print("(d) python [Everything in (a)] --country [Country]")
print("(e) python [Everything in (a)] --interval [Interval] --country [Country]")
print('---')
print("(5) mutation_ranking: Rank AA substitutions within the NTD, RBD, outside of those two domains, or witin the entire Spike based on the Sequence Prevalence Score")
print("(a) python main.py --filename [Emerging Variants Report] --analysis mutation_ranking --domain [NTD/RBD/Spike/Other]")
print("(b) python main.py --filename [Emerging Variants Report] --analysis mutation_ranking --mutations [Mutations TXT File]")
print("(b) python [Everything in (a) or (b)] --interval [Interval]")
print("(c) python [Everything in (a) or (b)] --country [Country]")
print("(e) python [Everything in (a) or (b)] --[interval/domain/mutations/country] [Interval/Country/[Domains]/Mutations TXT File")
print('---')
print("(6) graph: Graph trends of PANGO Lineages, trends of covariants within a PANGO Lineage, WHO Label, or inputed file, or trends of single point mutations")
print('---')
print("(7) help: Print out the GENERAL USAGE and GRAPH USAGE")
print('\n')
print("See ReadMe.md for more specific details regarding usage.")
print('\n')
# Used for opening the covariants file. This file must have at least one column named 'Variant'
# WARNING: Must makes sure entries in Variant Column match the variants in the spreadsheet. Otherwise, analysis results will be off.
def open_covariants_file(file):
try:
covariants_file = pd.read_csv(file, sep = '\t', encoding = 'latin-1')
if ('Variant' in covariants_file.columns):
if ('Name' in covariants_file.columns):
covariants_file['Name'] = covariants_file['Name'].str.encode('ascii', 'ignore').str.decode('ascii')
covariants_file['Name'] = covariants_file['Name'].str.replace('Ê', '')
covariants_file['Variant'] = covariants_file['Variant'].str.replace(' ', '')
covariants_file['Variant'] = covariants_file['Variant'].str.replace('Ê', '')
return(covariants_file)
else:
sys.exit("Invalid covariants file format. Inputted covariants file must be tabular with one column labeled 'Variant'. Optional 'Name' or 'Identifier' columns permitted. See ReadMe.md for more details.")
except:
raise Exception("Could not open covariants file")
# Used for opening the file with list of countries, lineages, and single point mutations
def open_optional_file(file):
try:
entries = open(file).read().splitlines()
return(entries)
except:
raise Exception("Could not open optional TXT file")
# Opens the Emerging Variants Report and returns the data from the spreadsheet
def open_emerging_variants(file):
try:
print("Opening the Emerging Variants Report ...")
variants_xlsx = pd.ExcelFile(file)
return(variants_xlsx)
except:
raise Exception("Could not open file for Emerging Variants Report")
if __name__ == '__main__':
analysis_options = ['lineage_ranking', 'sequence_ranking', 'functional_ranking', 'composite_ranking', 'mutation_ranking', 'graph', 'help']
domains = ['NTD', 'RBD', 'Spike', 'Other']
if (len(sys.argv) < 4 or len(sys.argv) > 10):
sys.exit(program_usage())
parser = argparse.ArgumentParser()
parser.add_argument('--filename', dest = 'filename', type = str)
parser.add_argument('--analysis', dest = 'analysis', type = str)
parser.add_argument('--PANGO', dest = 'pango', type = str)
parser.add_argument('--WHO', dest = 'who', type = str)
parser.add_argument('--covariants', dest = 'covariant', type = str)
parser.add_argument('--interval', dest = 'interval', type = int)
parser.add_argument('--lineage_file', dest = 'lineage_file', type = str)
parser.add_argument('--lineage', dest = 'lineage', type = str)
parser.add_argument('--country_file', dest = 'country_file', type = str)
parser.add_argument('--country', dest = 'country', type = str)
parser.add_argument('--domain', dest = 'domain', type = str)
parser.add_argument('--mutations', dest = 'mutation', type = str)
args = parser.parse_args()
# Ensure proper arguments to the commandline
if (not args.filename):
sys.exit(program_usage())
if (args.analysis not in analysis_options):
sys.exit(program_usage())
if (args.analysis == 'lineage_ranking' and (args.pango or args.who or args.covariant)):
sys.exit(program_usage())
if (args.pango and args.who and args.covariant):
sys.exit(program_usage())
if (args.pango and (args.who or args.covariant)):
sys.exit(program_usage())
if (args.who and (args.pango or args.covariant)):
sys.exit(program_usage())
if (args.covariant and (args.pango or args.who)):
sys.exit(program_usage())
if ((args.analysis != 'mutation_ranking' and args.analysis != 'graph') and (args.domain or args.mutation)):
sys.exit(program_usage())
if (args.analysis == 'mutation_ranking' and (not args.domain and not args.mutation)):
sys.exit(program_usage())
if (args.analysis == 'mutation_ranking' and (not args.mutation) and (args.domain not in domains)):
sys.exit(program_usage())
if (args.analysis == 'help'):
program_usage()
graph_args_usage()
sys.exit()
if (args.analysis != 'graph' and (args.lineage_file or args.lineage or args.country_file)):
sys.exit(program_usage())
if (args.analysis == 'graph' and (args.lineage_file and args.country_file)):
sys.exit(graph_args_usage())
if (args.analysis == 'graph' and (args.lineage and args.country)):
sys.exit(graph_args_usage())
if (args.analysis == 'graph' and (not args.lineage and args.country_file)):
sys.exit(graph_args_usage())
if (args.analysis == 'graph' and args.lineage and (args.pango or args.who or args.covariant)):
sys.exit(graph_args_usage())
if (args.analysis == 'graph' and (args.lineage or args.lineage_file or args.country_file) and (args.domain or args.mutation)):
sys.exit(graph_args_usage())
if (args.analysis == 'graph' and (args.pango or args.who or args.covariant) and (args.domain or args.mutation)):
sys.exit(graph_args_usage())
if (args.analysis == 'graph' and (args.domain and args.mutation)):
sys.exit(graph_args_usage())
if (args.analysis == 'graph' and args.domain and (args.domain not in domains)):
sys.exit(graph_args_usage())
if (args.interval):
interval = args.interval
else:
interval = 4
# Filter the data by country or countries if needed
variants_xlsx = open_emerging_variants(args.filename)
if (not args.country):
variants = pd.read_excel(variants_xlsx, 'World - Variants')
lineages = pd.read_excel(variants_xlsx, 'World - Lineages')
mutations = pd.read_excel(variants_xlsx, 'AA Mutations')
analysis_variants = variants[(variants['Country'] != 'All') & (variants['Country'] != 'Unknown')]
graph_variants = variants[(variants['Country'] == 'All')]
lineages = lineages[(lineages['Country'] == 'All')]
analysis_subs = mutations[(mutations['Country'] != 'All') & (mutations['Country'] != 'Unknown')]
graph_subs = mutations[(mutations['Country'] == 'All')]
region = "World"
elif (args.country == "USA"):
analysis_variants = pd.read_excel(variants_xlsx, 'USA - Variants')
lineages = pd.read_excel(variants_xlsx, 'USA - Lineages')
mutations = pd.read_excel(variants_xlsx, 'AA Mutations')
graph_variants = analysis_variants[(analysis_variants['Region'] == 'All')]
lineages = lineages[(lineages['Region'] == 'All')]
graph_subs = mutations[(mutations['Country'] == 'USA')]
region = "USA"
else:
variants = pd.read_excel(variants_xlsx, 'World - Variants')
lineages = pd.read_excel(variants_xlsx, 'World - Lineages')
mutations = pd.read_excel(variants_xlsx, 'AA Mutations')
analysis_variants = variants[(variants['Country'] == args.country)]
graph_variants = analysis_variants
lineages = lineages[(lineages['Country'] == args.country)]
analysis_subs = mutations[(mutations['Country'] == args.country)]
graph_subs = analysis_subs
region = args.country
if (args.country_file):
countries = open_optional_file(args.country_file)
lineages = pd.read_excel(variants_xlsx, 'World - Lineages')
lineages = lineages[(lineages['Country'].isin(countries))]
# The following code conducts the range of analysis options
if (args.analysis == 'lineage_ranking'):
emergence_ranking = va.lineage_ranking(analysis_variants, interval)
emergence_ranking.to_csv('lineage_ranking_'+region+'.tsv', sep = '\t', index = False)
print(emergence_ranking)
print('\n')
graph = input('Display a graph of trends over time for top emerging lineages in '+region+'? [y/n]: ')
if (graph == 'y'):
vp.plot_lineages(lineages, emergence_ranking['PANGO Lineage'], region)
elif (args.analysis == 'sequence_ranking'):
if (args.covariant):
covariants_file = open_covariants_file(args.covariant)
covariants = list(covariants_file['Variant'])
covariant_score = va.sequence_ranking(analysis_variants, interval, covariants = covariants)
covariant_score = pd.merge(covariants_file, covariant_score, on = "Variant")
covariant_score = covariant_score.sort_values(by = 'Sequence Prevalence Score', ascending = False).reset_index(drop = True)
covariant_score.to_csv('inputted_covariants_sequence_ranking_'+region+'.tsv', sep = '\t', index = False)
print(covariant_score)
print('\n')
graph = input('Display a graph of trends over time for the top user inputted covariants from the sequence ranking in '+region+'? [y/n]: ')
if (graph == 'y'):
if ('Name' in covariants_file.columns):
names = list(covariants_file['Name'])
name_dict = dict(zip(covariants, names))
vp.plot_covariants(graph_variants, covariants, region, name = name_dict)
else:
vp.plot_covariants(graph_variants, covariants, region)
elif (args.pango):
pango_lineage = args.pango
if (analysis_variants['PANGO Lineage'].isin([pango_lineage]).any()):
covariant_score = va.sequence_ranking(analysis_variants, interval, lineage = [pango_lineage])
covariant_score.to_csv(pango_lineage+'_sequence_ranking_'+region+'.tsv', sep = '\t', index = False)
print(covariant_score)
print('\n')
graph = input('Display a graph of trends over time for the top covariants from the sequence ranking for '+pango_lineage+' in '+region+'? [y/n]: ')
if (graph == 'y'):
vp.plot_covariants(graph_variants, covariant_score['Variant'].tolist(), region, pango = pango_lineage)
else:
sys.exit("PANGO Lineage is invalid and not found. Please try again an input a valid PANGO Lineage.")
elif (args.who):
who_label = args.who
if (analysis_variants['WHO Label'].isin([who_label]).any()):
covariant_score = va.sequence_ranking(analysis_variants, interval, who = [who_label])
covariant_score.to_csv(who_label+'_sequence_ranking_'+region+'.tsv', sep = '\t', index = False)
print(covariant_score)
print('\n')
graph = input('Display a graph of trends over time for the top covariants from the substitution ranking for '+who_label+' in '+region+'? [y/n]: ')
if (graph == 'y'):
vp.plot_covariants(graph_variants, covariant_score['Variant'].tolist(), region, who = who_label)
else:
sys.exit("WHO Label is invalid and not found. Please try again and input a valid WHO Label.")
else:
covariants_score = va.sequence_ranking(analysis_variants, interval)
covariants_score.to_csv('emerging_covariants_sequence_ranking_'+region+'.tsv', sep = '\t', index = False)
print(covariants_score)
print('\n')
graph = input('Display a graph of trends over time for the top covariants from the sequence ranking in '+region+'? [y/n]: ')
if (graph == 'y'):
vp.plot_covariants(graph_variants, covariants_score['Variant'].tolist(), region, inputted = True)
elif (args.analysis == 'functional_ranking'):
sfocs = pd.read_excel(variants_xlsx, 'SFoCs')
sfocs = sfocs[(sfocs['Protein'] == 'Spike')]
if (args.covariant):
covariants_file = open_covariants_file(args.covariant)
covariants = list(covariants_file['Variant'])
covariant_score = va.functional_ranking(analysis_variants, sfocs, covariants = covariants)
covariant_score = pd.merge(covariants_file, covariant_score, on = "Variant")
covariant_score = covariant_score.drop_duplicates(subset = ['Variant']).sort_values(by = 'Functional Impact Score', ascending = False).reset_index(drop = True)
covariant_score.to_csv('inputted_covariants_functional_ranking_'+region+'.tsv', sep = '\t', index = False)
print(covariant_score)
print('\n')
graph = input('Display a graph of trends over time for the top inputted covariants from the functional_ranking in '+region+'? [y/n]: ')
if (graph == 'y'):
if ('Name' in covariants_file.columns):
names = list(covariants_file['Name'])
name_dict = dict(zip(covariants, names))
vp.plot_covariants(graph_variants, covariants, region, name = name_dict)
else:
vp.plot_covariants(graph_variants, covariants, region)
elif (args.pango):
pango_lineage = args.pango
if (analysis_variants['PANGO Lineage'].isin([pango_lineage]).any()):
covariant_score = va.functional_ranking(analysis_variants, sfocs, lineage = [pango_lineage])
covariant_score.to_csv(pango_lineage+'_functional_ranking_'+region+'.tsv', sep = '\t', index = False)
print(covariant_score)
print('\n')
graph = input('Display a graph of trends over time for the top covariants from the functional_ranking for '+pango_lineage+' in '+region+'? [y/n]: ')
if (graph == 'y'):
vp.plot_covariants(graph_variants, covariant_score['Variant'].tolist(), region, pango = pango_lineage)
else:
sys.exit("PANGO Lineage is invalid and not found. Please try again an input a valid PANGO Lineage.")
elif (args.who):
who_label = args.who
if (analysis_variants['WHO Label'].isin([who_label]).any()):
covariant_score = va.functional_ranking(analysis_variants, sfocs, who = [who_label])
covariant_score.to_csv(who_label+'_functional_ranking_'+region+'.tsv', sep = '\t', index = False)
print(covariant_score)
print('\n')
graph = input('Display a graph of trends over time for the top covariants from the functional_ranking for '+who_label+' in '+region+'? [y/n]: ')
if (graph == 'y'):
vp.plot_covariants(graph_variants, covariant_score['Variant'].tolist(), region, who = who_label)
else:
sys.exit("WHO Label is invalid and not found. Please try again and input a valid WHO Label.")
else:
print('WARNING! This computation may take some time! Reconsider if necessary. Control + C to abort.')
analysis_variants = analysis_variants[analysis_variants[analysis_variants[analysis_variants.columns[pd.Series(analysis_variants.columns).str.startswith('Variant Count')]].iloc[:,0].name] > 10]
covariants_score = va.functional_ranking(analysis_variants, sfocs)
covariants_score.to_csv('emerging_covariants_functional_ranking_'+region+'.tsv', sep = '\t', index = False)
print(covariants_score)
print('\n')
graph = input('Display a graph of trends over time for the top covariants from the functional ranking in '+region+'? [y/n]: ')
if (graph == 'y'):
vp.plot_covariants(graph_variants, covariants_score['Variant'].tolist(), region, inputted = True)
elif (args.analysis == 'composite_ranking'):
sfocs = pd.read_excel(variants_xlsx, 'SFoCs')
sfocs = sfocs[(sfocs['Protein'] == 'Spike')]
if (args.covariant):
covariants_file = open_covariants_file(args.covariant)
covariants = list(covariants_file['Variant'])
covariant_score = va.composite_ranking(analysis_variants, sfocs, interval, covariants = covariants)
covariant_score = pd.merge(covariants_file, covariant_score, on = "Variant")
covariant_score = covariant_score.drop_duplicates(subset = ['Variant']).sort_values(by = 'Composite Score', ascending = False).reset_index(drop = True)
covariant_score.to_csv('inputted_covariants_composite_ranking_'+region+'.tsv', sep = '\t', index = False)
print(covariant_score)
print('\n')
graph = input('Display a graph of trends over time for the top inputted covariants from the composite_ranking in '+region+'? [y/n]: ')
if (graph == 'y'):
if ('Name' in covariants_file.columns):
names = list(covariants_file['Name'])
name_dict = dict(zip(covariants, names))
vp.plot_covariants(graph_variants, covariants, region, name = name_dict, inputted = True)
else:
vp.plot_covariants(graph_variants, covariants, region, inputted = True)
elif (args.pango):
pango_lineage = args.pango
if (analysis_variants['PANGO Lineage'].isin([pango_lineage]).any()):
covariant_score = va.composite_ranking(analysis_variants, sfocs, interval, lineage = [pango_lineage])
covariant_score.to_csv(pango_lineage+'_composite_ranking_'+region+'.tsv', sep = '\t', index = False)
print(covariant_score)
print('\n')
graph = input('Display a graph of trends over time for the top covariants from the composite_ranking for '+pango_lineage+' in '+region+'? [y/n]: ')
if (graph == 'y'):
vp.plot_covariants(graph_variants, covariant_score['Variant'].tolist(), region, pango = pango_lineage)
else:
sys.exit("PANGO Lineage is invalid and not found. Please try again an input a valid PANGO Lineage.")
elif (args.who):
who_label = args.who
if (analysis_variants['WHO Label'].isin([who_label]).any()):
covariant_score = va.composite_ranking(analysis_variants, sfocs, interval, who = [who_label])
covariant_score.to_csv(who_label+'_composite_ranking_'+region+'.tsv', sep = '\t', index = False)
print(covariant_score)
print('\n')
graph = input('Display a graph of trends over time for the top covariants from the composite_ranking for '+who_label+' in '+region+'? [y/n]: ')
if (graph == 'y'):
vp.plot_covariants(graph_variants, covariant_score['Variant'].tolist(), region, who = who_label)
else:
sys.exit("WHO Label is invalid and not found. Please try again and input a valid WHO Label.")
else:
covariants_score = va.composite_ranking(analysis_variants, sfocs, interval)
covariants_score.to_csv('emerging_covariants_composite_ranking_'+region+'.tsv', sep = '\t', index = False)
print(covariants_score)
print('\n')
graph = input('Display a graph of trends over time for the top covariants from the composite ranking in '+region+'? [y/n]: ')
if (graph == 'y'):
vp.plot_covariants(graph_variants, covariants_score['Variant'].tolist(), region, inputted = True)
elif (args.analysis == 'mutation_ranking'):
domain = args.domain
if (args.mutation):
mutation_file = open_optional_file(args.mutation)
mutation_ranking = va.mutation_ranking(analysis_subs, interval, domain, mutation_file)
mutation_ranking.to_csv('inputted_mutations_ranking_'+region+'.tsv', sep = '\t', index = False)
print(mutation_ranking)
else:
mutation_ranking = va.mutation_ranking(analysis_subs, interval, domain)
mutation_ranking.to_csv(domain+'_mutations_ranking_'+region+'.tsv', sep = '\t', index = False)
print(mutation_ranking)
graph = input('Display a graph of trends over time for the top point mutations ranked within '+domain+' in '+region+'? [y/n]: ')
if (graph == 'y'):
vp.plot_mutations(graph_subs, region, domain, mutation_ranking['Variant'].tolist())
elif (args.analysis == 'graph'):
if (args.lineage_file):
pango_lineages = open_optional_file(args.lineage_file)
if ((not args.country) and (len(pango_lineages) == 1)):
lineages = pd.read_excel(variants_xlsx, 'World - Lineages')
lineages = lineages[(lineages['Country'] != 'All') & (lineages['Country'] != 'Unknown')]
vp.plot_single_lineage(lineages, pango_lineages[0])
else:
vp.plot_lineages(lineages, pango_lineages, region)
elif (args.lineage):
pango_lineage = args.lineage
if (not args.country_file):
lineages = pd.read_excel(variants_xlsx, 'World - Lineages')
lineages = lineages[(lineages['Country'] != 'All') & (lineages['Country'] != 'Unknown')]
vp.plot_single_lineage(lineages, pango_lineage)
else:
vp.plot_single_lineage(lineages, pango_lineage)
elif (args.covariant):
covariants_file = open_covariants_file(args.covariant)
covariants = list(covariants_file['Variant'])
if (analysis_variants['Variant'].isin(covariants).any()):
if ('Name' in covariants_file.columns):
names = list(covariants_file['Name'])
name_dict = dict(zip(covariants, names))
vp.plot_covariants(graph_variants, covariants, region, name = name_dict, inputted = True)
else:
vp.plot_covariants(graph_variants, covariants, region, inputted = True)
else:
sys.exit("All covariants are invalid and not found. Please try again and input valid covariants.")
elif (args.pango):
pango_lineage = args.pango
if (analysis_variants['PANGO Lineage'].isin([pango_lineage]).any()):
covariant_score = va.sequence_ranking(analysis_variants, interval, lineage = [pango_lineage])
vp.plot_covariants(graph_variants, covariant_score['Variant'].tolist(), region, pango = pango_lineage, inputted = False)
else:
sys.exit("PANGO Lineage is invalid and not found. Please try again and input a valid PANGO Lineage.")
elif (args.who):
who_label = args.who
if (analysis_variants['WHO Label'].isin([who_label]).any()):
covariant_score = va.sequence_ranking(analysis_variants, interval, who = [who_label])
vp.plot_covariants(graph_variants, covariant_score['Variant'].tolist(), region, who = who_label, inputted = False)
else:
sys.exit("WHO Label is invalid and not found. Please try again and input a valid WHO Label.")
elif (args.mutation):
mutations = open_optional_file(args.mutation)
if (graph_subs['Variant'].isin(mutations).any()):
vp.plot_mutations(graph_subs, region, domain = "User Inputted", mutations = mutations)
else:
sys.exit("Point mutations are invalid and not found. Please try again and input a valid list of SARS-CoV-2 Spike mutations.")
elif (args.domain):
domain = args.domain
vp.plot_mutations(graph_subs, region, domain)
else:
recent_prevalence = analysis_variants[analysis_variants.columns[pd.Series(analysis_variants.columns).str.startswith('Prevalence')]].iloc[:,:6]
recent_prevalence = recent_prevalence.fillna(0)
lineage_prevalence_df = pd.concat([pd.DataFrame({'Lineage': analysis_variants['PANGO Lineage']}), recent_prevalence], axis = 1)
lineage_prevalence_df = lineage_prevalence_df.reindex(sorted(lineage_prevalence_df.columns), axis = 1).drop_duplicates(subset = ['Lineage'])
pango_lineages = lineage_prevalence_df['Lineage']
vp.plot_lineages(lineages, pango_lineages, region)