-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
35 lines (25 loc) · 1.07 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
\documentclass[leqno]{article}
\input{extras/packages} \input{extras/authors} \input{extras/macros}
\begin{document}
\title{The Gelfand Problem in Tubular Domains}
\maketitle
\abstract{We construct stable solutions of $\Delta u + \lambda e^u=0$ with
Dirichlet boundary conditions in small tubular domains (i.e.\ geodesic
$\ep$--neighbourhoods of a curve $\Lambda$ embedded in $\RR^n$), adapting the
arguments of Pacard-Pacella-Sciunzi. We also show unicity of these solutions,
in particular, we show that the stable branch of the bifurcation diagram is
similar to the well-known nose-shaped diagram of the standard Gelfand problem
in the unit ball. In this work, $\Lambda$ can be replaced by any compact smooth
manifold embedded in $\RR^n$.}
\smallskip
\input{sections/introduction}
\input{sections/preliminaries}
\input{sections/stable-solutions-in-the-tube}
% \input{sections/non-stable-solutions-2-3}
% \input{sections/unstable-less-than-11}
\input{sections/concluding-remarks}
\bibliographystyle{alpha}
%\nocite{*}
\bibliography{bibliography/biblio}
% \appendix
\end{document}