-
Notifications
You must be signed in to change notification settings - Fork 25
/
mamba.py
366 lines (257 loc) · 11.9 KB
/
mamba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import math
from dataclasses import dataclass
from typing import Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from pscan import pscan
"""
This file closely follows the mamba_simple.py from the official Mamba implementation, and the mamba-minimal by @johnma2006.
The major differences are :
-the convolution is done with torch.nn.Conv1d
-the selective scan is done in PyTorch
A sequential version of the selective scan is also available for comparison.
- A Mamba model is composed of several layers, which are ResidualBlock.
- A ResidualBlock is composed of a MambaBlock, a normalization, and a residual connection : ResidualBlock(x) = mamba(norm(x)) + x
- This leaves us with the MambaBlock : its input x is (B, L, D) and its outputs y is also (B, L, D) (B=batch size, L=seq len, D=model dim).
First, we expand x into (B, L, 2*ED) (where E is usually 2) and split it into x and z, each (B, L, ED).
Then, we apply the short 1d conv to x, followed by an activation function (silu), then the SSM.
We then multiply it by silu(z).
See Figure 3 of the paper (page 8) for a visual representation of a MambaBlock.
"""
@dataclass
class MambaConfig:
d_model: int # D
n_layers: int
dt_rank: Union[int, str] = 'auto'
d_state: int = 16 # N in paper/comments
expand_factor: int = 2 # E in paper/comments
d_conv: int = 4
dt_min: float = 0.001
dt_max: float = 0.1
dt_init: str = "random" # "random" or "constant"
dt_scale: float = 1.0
dt_init_floor = 1e-4
bias: bool = False
conv_bias: bool = True
pscan: bool = True # use parallel scan mode or sequential mode when training
def __post_init__(self):
self.d_inner = self.expand_factor * self.d_model # E*D = ED in comments
if self.dt_rank == 'auto':
self.dt_rank = math.ceil(self.d_model / 16)
class Mamba(nn.Module):
def __init__(self, config: MambaConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([ResidualBlock(config) for _ in range(config.n_layers)])
self.norm_f = RMSNorm(config.d_model)
def forward(self, x):
# x : (B, L, D)
# y : (B, L, D)
for layer in self.layers:
x = layer(x)
x = self.norm_f(x)
return x
def step(self, x, caches):
# x : (B, L, D)
# caches : [cache(layer) for all layers], cache : (h, inputs)
# y : (B, L, D)
# caches : [cache(layer) for all layers], cache : (h, inputs)
for i, layer in enumerate(self.layers):
x, caches[i] = layer.step(x, caches[i])
return x, caches
class ResidualBlock(nn.Module):
def __init__(self, config: MambaConfig):
super().__init__()
self.mixer = MambaBlock(config)
self.norm = RMSNorm(config.d_model)
def forward(self, x):
# x : (B, L, D)
# output : (B, L, D)
output = self.mixer(self.norm(x)) + x
return output
def step(self, x, cache):
# x : (B, D)
# cache : (h, inputs)
# h : (B, ED, N)
# inputs: (B, ED, d_conv-1)
# output : (B, D)
# cache : (h, inputs)
output, cache = self.mixer.step(self.norm(x), cache)
output = output + x
return output, cache
class MambaBlock(nn.Module):
def __init__(self, config: MambaConfig):
super().__init__()
self.config = config
# projects block input from D to 2*ED (two branches)
self.in_proj = nn.Linear(config.d_model, 2 * config.d_inner, bias=config.bias)
self.conv1d = nn.Conv1d(in_channels=config.d_inner, out_channels=config.d_inner,
kernel_size=config.d_conv, bias=config.conv_bias,
groups=config.d_inner,
padding=config.d_conv - 1)
# projects x to input-dependent Δ, B, C
self.x_proj = nn.Linear(config.d_inner, config.dt_rank + 2 * config.d_state, bias=False)
# projects Δ from dt_rank to d_inner
self.dt_proj = nn.Linear(config.dt_rank, config.d_inner, bias=True)
# dt initialization
# dt weights
dt_init_std = config.dt_rank**-0.5 * config.dt_scale
if config.dt_init == "constant":
nn.init.constant_(self.dt_proj.weight, dt_init_std)
elif config.dt_init == "random":
nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
else:
raise NotImplementedError
# dt bias
dt = torch.exp(
torch.rand(config.d_inner) * (math.log(config.dt_max) - math.log(config.dt_min)) + math.log(config.dt_min)
).clamp(min=config.dt_init_floor)
inv_dt = dt + torch.log(-torch.expm1(-dt)) # inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
with torch.no_grad():
self.dt_proj.bias.copy_(inv_dt)
#self.dt_proj.bias._no_reinit = True # initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
# todo : explain why removed
# S4D real initialization
A = torch.arange(1, config.d_state + 1, dtype=torch.float32).repeat(config.d_inner, 1)
self.A_log = nn.Parameter(torch.log(A)) # why store A in log ? to keep A < 0 (cf -torch.exp(...)) ? for gradient stability ?
self.D = nn.Parameter(torch.ones(config.d_inner))
# projects block output from ED back to D
self.out_proj = nn.Linear(config.d_inner, config.d_model, bias=config.bias)
def forward(self, x):
# x : (B, L, D)
# y : (B, L, D)
_, L, _ = x.shape
xz = self.in_proj(x) # (B, L, 2*ED)
x, z = xz.chunk(2, dim=-1) # (B, L, ED), (B, L, ED)
# x branch
x = x.transpose(1, 2) # (B, ED, L)
x = self.conv1d(x)[:, :, :L] # depthwise convolution over time, with a short filter
x = x.transpose(1, 2) # (B, L, ED)
x = F.silu(x)
y = self.ssm(x)
# z branch
z = F.silu(z)
output = y * z
output = self.out_proj(output) # (B, L, D)
return output
def ssm(self, x):
# x : (B, L, ED)
# y : (B, L, ED)
A = -torch.exp(self.A_log.float()) # (ED, N)
D = self.D.float()
# TODO remove .float()
deltaBC = self.x_proj(x) # (B, L, dt_rank+2*N)
delta, B, C = torch.split(deltaBC, [self.config.dt_rank, self.config.d_state, self.config.d_state], dim=-1) # (B, L, dt_rank), (B, L, N), (B, L, N)
delta = F.softplus(self.dt_proj(delta)) # (B, L, ED)
if self.config.pscan:
y = self.selective_scan(x, delta, A, B, C, D)
else:
y = self.selective_scan_seq(x, delta, A, B, C, D)
return y
def selective_scan(self, x, delta, A, B, C, D):
# x : (B, L, ED)
# Δ : (B, L, ED)
# A : (ED, N)
# B : (B, L, N)
# C : (B, L, N)
# D : (ED)
# y : (B, L, ED)
deltaA = torch.exp(delta.unsqueeze(-1) * A) # (B, L, ED, N)
deltaB = delta.unsqueeze(-1) * B.unsqueeze(2) # (B, L, ED, N)
BX = deltaB * (x.unsqueeze(-1)) # (B, L, ED, N)
hs = pscan(deltaA, BX)
y = (hs @ C.unsqueeze(-1)).squeeze(3) # (B, L, ED, N) @ (B, L, N, 1) -> (B, L, ED, 1)
y = y + D * x
return y
def selective_scan_seq(self, x, delta, A, B, C, D):
# x : (B, L, ED)
# Δ : (B, L, ED)
# A : (ED, N)
# B : (B, L, N)
# C : (B, L, N)
# D : (ED)
# y : (B, L, ED)
_, L, _ = x.shape
deltaA = torch.exp(delta.unsqueeze(-1) * A) # (B, L, ED, N)
deltaB = delta.unsqueeze(-1) * B.unsqueeze(2) # (B, L, ED, N)
BX = deltaB * (x.unsqueeze(-1)) # (B, L, ED, N)
h = torch.zeros(x.size(0), self.config.d_inner, self.config.d_state, device=deltaA.device) # (B, ED, N)
hs = []
for t in range(0, L):
h = deltaA[:, t] * h + BX[:, t]
hs.append(h)
hs = torch.stack(hs, dim=1) # (B, L, ED, N)
y = (hs @ C.unsqueeze(-1)).squeeze(3) # (B, L, ED, N) @ (B, L, N, 1) -> (B, L, ED, 1)
y = y + D * x
return y
# -------------------------- inference -------------------------- #
"""
Concerning auto-regressive inference
The cool part of using Mamba : inference is constant wrt to sequence length
We just have to keep in cache, for each layer, two things :
- the hidden state h (which is (B, ED, N)), as you typically would when doing inference with a RNN
- the last d_conv-1 inputs of the layer, to be able to compute the 1D conv which is a convolution over the time dimension
(d_conv is fixed so this doesn't incur a growing cache as we progress on generating the sequence)
(and d_conv is usually very small, like 4, so we just have to "remember" the last 3 inputs)
Concretely, these two quantities are put inside a cache tuple, and are named h and inputs respectively.
h is (B, ED, N), and inputs is (B, ED, d_conv-1)
The MambaBlock.step() receives this cache, and, along with outputing the output, alos outputs the updated cache for the next call.
The cache object is initialized as follows : (None, torch.zeros()).
When h is None, the selective scan function detects it and start with h=0.
The torch.zeros() isn't a problem (it's same as just feeding the input, because the conv1d is padded)
As we need one such cache variable per layer, we store a caches object, which is simply a list of cache object. (See mamba_lm.py)
"""
def step(self, x, cache):
# x : (B, D)
# cache : (h, inputs)
# h : (B, ED, N)
# inputs : (B, ED, d_conv-1)
# y : (B, D)
# cache : (h, inputs)
h, inputs = cache
xz = self.in_proj(x) # (B, 2*ED)
x, z = xz.chunk(2, dim=1) # (B, ED), (B, ED)
# x branch
x_cache = x.unsqueeze(2)
x = self.conv1d(torch.cat([inputs, x_cache], dim=2))[:, :, self.config.d_conv-1] # (B, ED)
x = F.silu(x)
y, h = self.ssm_step(x, h)
# z branch
z = F.silu(z)
output = y * z
output = self.out_proj(output) # (B, D)
# prepare cache for next call
inputs = torch.cat([inputs[:, :, 1:], x_cache], dim=2) # (B, ED, d_conv-1)
cache = (h, inputs)
return output, cache
def ssm_step(self, x, h):
# x : (B, ED)
# h : (B, ED, N)
# y : (B, ED)
# h : (B, ED, N)
A = -torch.exp(self.A_log.float()) # (ED, N) # todo : ne pas le faire tout le temps, puisque c'est indépendant de la timestep
D = self.D.float()
# TODO remove .float()
deltaBC = self.x_proj(x) # (B, dt_rank+2*N)
delta, B, C = torch.split(deltaBC, [self.config.dt_rank, self.config.d_state, self.config.d_state], dim=-1) # (B, dt_rank), (B, N), (B, N)
delta = F.softplus(self.dt_proj(delta)) # (B, ED)
deltaA = torch.exp(delta.unsqueeze(-1) * A) # (B, ED, N)
deltaB = delta.unsqueeze(-1) * B.unsqueeze(1) # (B, ED, N)
BX = deltaB * (x.unsqueeze(-1)) # (B, ED, N)
if h is None:
h = torch.zeros(x.size(0), self.config.d_inner, self.config.d_state, device=deltaA.device) # (B, ED, N)
h = deltaA * h + BX # (B, ED, N)
y = (h @ C.unsqueeze(-1)).squeeze(2) # (B, ED, N) @ (B, N, 1) -> (B, ED, 1)
y = y + D * x
# todo : pq h.squeeze(1) ??
return y, h.squeeze(1)
# taken straight from https://github.com/johnma2006/mamba-minimal/blob/master/model.py
class RMSNorm(nn.Module):
def __init__(self, d_model: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(d_model))
def forward(self, x):
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
return output