-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
214 lines (190 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import argparse
import os
import torch
import gradio as gr
from asr import CTCAttentionASRParser, CLASCTCAttentionASRParser, CopyNEASRParser, ParaformerASRParser
from supar.utils.logging import init_logger, logger
from torch.distributed import init_process_group, destroy_process_group
from utils.data import make_ne_vocab_file
import torchaudio
import random
import shutil
def ddp_setup():
init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
def parse(parser):
ddp_setup()
parser.add_argument('--path', help='path to model file')
parser.add_argument('--pre_model', type=str, default="None")
parser.add_argument('--seed', '-s', default=1, type=int, help='seed for generating random numbers')
parser.add_argument('--batch_size', default=16, type=int, help='batch size')
parser.add_argument('--num_workers', default=1, type=int)
parser.add_argument('--e2ener', action='store_true', help='whether it is an e2ener model')
parser.add_argument('--char_dict', default='data/sp_ner/chinese_char.txt', help='path to the char dict file')
parser.add_argument('--cmvn', default='data_to_upload/aishell1_global_cmvn_mel80', help='global cmvn file')
parser.add_argument('--config', default='conf/ctc_mel80.yaml', help='config file')
parser.add_argument('--add_bert', action='store_true', help='whether to add bert')
parser.add_argument('--bert', default='bert-base-chinese', help='which bert model to use')
parser.add_argument('--frame_length', default=25, type=int)
parser.add_argument('--frame_shift', default=10, type=int)
parser.add_argument('--max_frame_num', default=10000, type=int)
parser.add_argument('--add_context', action='store_true', help='whether to add context')
parser.add_argument('--pad_context', default=3, type=float)
parser.add_argument('--train_ne_dict', default='data/end2end/aishell_train_ner_most-all.vocab')
parser.add_argument('--dev_ne_dict', default='data/end2end/aishell_dev_ner_random-500.vocab')
parser.add_argument('--att_type', default='simpleatt', type=str, choices=['contextual', 'crossatt', 'simpleatt'])
parser.add_argument('--add_copy_loss', action='store_true')
parser.add_argument('--no_concat', action='store_true')
parser.add_argument('--use_avg', action='store_true')
args, unknown = parser.parse_known_args()
args, _ = parser.parse_known_args(unknown, args)
torch.manual_seed(args.seed)
if int((torch.__version__)[0]) > 1:
torch.set_float32_matmul_precision('high') # it should be set to high for torch2.0
init_logger(logger, os.path.join(args.path, f"{args.mode}.log"))
logger.info('\n' + str(args))
if args.mode == 'train':
if not args.add_context:
parser = CTCAttentionASRParser(args)
else:
if not args.add_copy_loss:
parser = CLASCTCAttentionASRParser(args)
else:
parser = CopyNEASRParser(args)
logger.info(f'{parser.model}\n')
parser.train()
elif args.mode == 'evaluate':
if not args.add_context:
parser = CTCAttentionASRParser(args)
else:
if not args.add_copy_loss:
parser = CLASCTCAttentionASRParser(args)
else:
parser = CopyNEASRParser(args)
logger.info(f'{parser.model}\n')
parser.eval()
elif args.mode == 'api':
assert args.add_context
assert args.add_copy_loss
parser = CopyNEASRParser(args)
# 定义处理上传的音频和词典文件的函数
def process_audio(audio_file_path, dictionary_input_text, dictionary_input_file, input_type, copy_threshold=0.9):
random_dir_path = "tmp_dir" + str(random.randint(0, 999999))
if input_type == "File":
with open(dictionary_input_file.name, 'r', encoding='utf-8') as f:
dictionary_content = f.read()
dictionary_file_path = make_ne_vocab_file(dictionary_input_file, input_type, tmp_dir=random_dir_path)
else:
dictionary_content = dictionary_input_text
dictionary_file_path = make_ne_vocab_file(dictionary_input_text, input_type, tmp_dir=random_dir_path)
# 调用ASR模型进行转录
transcription = parser.api(audio_file_path, dictionary_file_path, copy_threshold, tmp_dir=random_dir_path)
# del the dir
shutil.rmtree(random_dir_path)
return transcription, dictionary_content
# 创建Gradio界面
with gr.Blocks() as demo:
# 使用HTML和CSS添加动态效果
gr.HTML("""
<style>
@keyframes rainbow {
0% { color: red; }
14% { color: orange; }
28% { color: yellow; }
42% { color: green; }
57% { color: blue; }
71% { color: indigo; }
85% { color: violet; }
100% { color: red; }
}
.rainbow-text {
animation: rainbow 5s linear infinite;
}
@keyframes typing {
from { width: 0; }
to { width: 100%; }
}
.typing-demo {
display: inline-block;
overflow: hidden;
white-space: nowrap;
font-size: 1.5em;
animation: typing 10s steps(40, end), blink-caret 2.5s step-end infinite;
}
@keyframes blink-caret {
from, to { border-color: transparent; }
50% { border-color: orange; }
}
.typing-finished {
animation-fill-mode: forwards;
}
</style>
<div style="text-align: center;">
<h1 class="typing-demo"><span class="rainbow-text">CopyNE Demo</span></h1>
<h3>https://github.com/zsLin177/CopyNE</h3>
</div>
<script>
setTimeout(() => {
document.querySelector('.typing-demo').classList.add('typing-finished');
}, 4000);
// 添加打字效果到output
let outputText = document.querySelector('.output_textbox');
let outputContent = outputText.innerHTML;
outputText.innerHTML = '';
let i = 0;
let typingInterval = setInterval(() => {
if (i < outputContent.length) {
outputText.innerHTML += outputContent.charAt(i);
i++;
} else {
clearInterval(typingInterval);
}
}, 50);
</script>
""")
with gr.Row():
with gr.Column():
gr.Markdown("#### 上传音频文件或使用麦克风录制")
audio_input = gr.Audio(type="filepath", label="音频文件")
gr.Markdown("#### 选择词典输入方式")
input_type = gr.Radio(choices=["Text", "File"], label="输入方式", value="Text")
text_input = gr.Textbox(label="词典内容, 以逗号间隔", placeholder="在此处输入词典内容", visible=True)
file_input = gr.File(label="词典文件,每行一个词", visible=False, type="filepath")
gr.Markdown("#### 词典内容")
dictionary_display = gr.Textbox(label="", placeholder="词典内容将显示在这里", lines=10, interactive=False)
with gr.Column():
gr.Markdown("#### Copy Threshold (推荐0.9)")
threshold_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="阈值")
gr.Markdown("#### 转录结果")
output = gr.Textbox(label="", placeholder="转录结果将显示在这里", lines=10)
submit_button = gr.Button("开始转录")
# 根据选择的输入方式显示相应的输入组件
def toggle_inputs(input_type):
if input_type == "Text":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
input_type.change(toggle_inputs, inputs=input_type, outputs=[text_input, file_input])
submit_button.click(process_audio, inputs=[audio_input, text_input, file_input, input_type, threshold_slider], outputs=[output, dictionary_display])
# 运行Gradio应用
demo.launch()
destroy_process_group()
if __name__ == '__main__':
parser = argparse.ArgumentParser(allow_abbrev=False)
subparsers = parser.add_subparsers(title='Commands', dest='mode')
# train
subparser = subparsers.add_parser('train', help='Train a parser.')
subparser.add_argument('--train', default='data/sp_ner/new_train.json', help='path to train file')
subparser.add_argument('--dev', default='data/end2end/dev_single_bracket.json', help='path to dev file')
subparser.add_argument('--test', default='data/sp_ner/new_test.json', help='path to test file')
subparser = subparsers.add_parser('evaluate', help='Evaluation.')
subparser.add_argument('--input', default='data/aishell1_asr/test.json', help='path to input file')
subparser.add_argument('--test_ne_dict', default='data/end2end/aishell_dev_ner_allmost300.vocab')
subparser.add_argument('--res', default='pred.txt', help='path to input file')
subparser.add_argument('--decode_mode', choices=['attention', 'ctc_greedy_search', 'copy_attention'], help='decoding mode to use')
subparser.add_argument('--beam_size', default=10, type=int, help='beam size')
subparser.add_argument('--copy_threshold', default=0.9, type=float, help='threshold for copying')
subparser = subparsers.add_parser('api', help='API')
subparser.add_argument('--test_ne_dict', default='None')
subparser.add_argument('--beam_size', default=10, type=int, help='beam size')
parse(parser)