Skip to content

Latest commit

 

History

History
607 lines (539 loc) · 16.3 KB

File metadata and controls

607 lines (539 loc) · 16.3 KB

English Version

题目描述

给你一个下标从 0 开始的整数数组 nums ,该数组由 互不相同 的数字组成。另给你两个整数 startgoal

整数 x 的值最开始设为 start ,你打算执行一些运算使 x 转化为 goal 。你可以对数字 x 重复执行下述运算:

如果 0 <= x <= 1000 ,那么,对于数组中的任一下标 i0 <= i < nums.length),可以将 x 设为下述任一值:

  • x + nums[i]
  • x - nums[i]
  • x ^ nums[i](按位异或 XOR)

注意,你可以按任意顺序使用每个 nums[i] 任意次。使 x 越过 0 <= x <= 1000 范围的运算同样可以生效,但该该运算执行后将不能执行其他运算。

返回将 x = start 转化为 goal 的最小操作数;如果无法完成转化,则返回 -1

 

示例 1:

输入:nums = [2,4,12], start = 2, goal = 12
输出:2
解释:
可以按 2 → 14 → 12 的转化路径进行,只需执行下述 2 次运算:
- 2 + 12 = 14
- 14 - 2 = 12

示例 2:

输入:nums = [3,5,7], start = 0, goal = -4
输出:2
解释:
可以按 0 → 3 → -4 的转化路径进行,只需执行下述 2 次运算:
- 0 + 3 = 3
- 3 - 7 = -4
注意,最后一步运算使 x 超过范围 0 <= x <= 1000 ,但该运算仍然可以生效。

示例 3:

输入:nums = [2,8,16], start = 0, goal = 1
输出:-1
解释:
无法将 0 转化为 1

 

提示:

  • 1 <= nums.length <= 1000
  • -109 <= nums[i], goal <= 109
  • 0 <= start <= 1000
  • start != goal
  • nums 中的所有整数互不相同

解法

BFS 最小步数模型。本题搜索空间不大,可以直接使用朴素 BFS,以下题解中还提供了双向 BFS 的题解代码,仅供参考。

双向 BFS 是 BFS 常见的一个优化方法,主要实现思路如下:

  1. 创建两个队列 q1, q2 分别用于“起点 -> 终点”、“终点 -> 起点”两个方向的搜索;
  2. 创建两个哈希表 m1, m2 分别记录访问过的节点以及对应的扩展次数(步数);
  3. 每次搜索时,优先选择元素数量较少的队列进行搜索扩展,如果在扩展过程中,搜索到另一个方向已经访问过的节点,说明找到了最短路径;
  4. 只要其中一个队列为空,说明当前方向的搜索已经进行不下去了,说明起点到终点不连通,无需继续搜索。
while q1 and q2:
    if len(q1) <= len(q2):
        # 优先选择较少元素的队列进行扩展
        extend(m1, m2, q1)
    else:
        extend(m2, m1, q2)


def extend(m1, m2, q):
    # 新一轮扩展
    for _ in range(len(q)):
        p = q.popleft()
        step = m1[p]
        for t in next(p):
            if t in m1:
                # 此前已经访问过
                continue
            if t in m2:
                # 另一个方向已经搜索过,说明找到了一条最短的连通路径
                return step + 1 + m2[t]
            q.append(t)
            m1[t] = step + 1

Python3

class Solution:
    def minimumOperations(self, nums: List[int], start: int, goal: int) -> int:
        op1 = lambda x, y: x + y
        op2 = lambda x, y: x - y
        op3 = lambda x, y: x ^ y
        ops = [op1, op2, op3]
        vis = [False] * 1001
        q = deque([(start, 0)])
        while q:
            x, step = q.popleft()
            for num in nums:
                for op in ops:
                    nx = op(x, num)
                    if nx == goal:
                        return step + 1
                    if 0 <= nx <= 1000 and not vis[nx]:
                        q.append((nx, step + 1))
                        vis[nx] = True
        return -1
class Solution:
    def minimumOperations(self, nums: List[int], start: int, goal: int) -> int:
        def next(x):
            res = []
            for num in nums:
                res.append(x + num)
                res.append(x - num)
                res.append(x ^ num)
            return res

        q = deque([start])
        vis = {start}
        ans = 0
        while q:
            ans += 1
            for _ in range(len(q)):
                x = q.popleft()
                for y in next(x):
                    if y == goal:
                        return ans
                    if 0 <= y <= 1000 and y not in vis:
                        vis.add(y)
                        q.append(y)
        return -1

双向 BFS:

class Solution:
    def minimumOperations(self, nums: List[int], start: int, goal: int) -> int:
        def next(x):
            res = []
            for num in nums:
                res.append(x + num)
                res.append(x - num)
                res.append(x ^ num)
            return res

        def extend(m1, m2, q):
            for _ in range(len(q)):
                x = q.popleft()
                step = m1[x]
                for y in next(x):
                    if y in m1:
                        continue
                    if y in m2:
                        return step + 1 + m2[y]
                    if 0 <= y <= 1000:
                        m1[y] = step + 1
                        q.append(y)
            return -1

        m1, m2 = {start: 0}, {goal: 0}
        q1, q2 = deque([start]), deque([goal])
        while q1 and q2:
            t = extend(m1, m2, q1) if len(q1) <= len(q2) else extend(m2, m1, q2)
            if t != -1:
                return t
        return -1

Java

class Solution {
    public int minimumOperations(int[] nums, int start, int goal) {
        IntBinaryOperator op1 = (x, y) -> x + y;
        IntBinaryOperator op2 = (x, y) -> x - y;
        IntBinaryOperator op3 = (x, y) -> x ^ y;
        IntBinaryOperator[] ops = {op1, op2, op3};
        boolean[] vis = new boolean[1001];
        Queue<int[]> queue = new ArrayDeque<>();
        queue.offer(new int[] {start, 0});
        while (!queue.isEmpty()) {
            int[] p = queue.poll();
            int x = p[0], step = p[1];
            for (int num : nums) {
                for (IntBinaryOperator op : ops) {
                    int nx = op.applyAsInt(x, num);
                    if (nx == goal) {
                        return step + 1;
                    }
                    if (nx >= 0 && nx <= 1000 && !vis[nx]) {
                        queue.offer(new int[] {nx, step + 1});
                        vis[nx] = true;
                    }
                }
            }
        }
        return -1;
    }
}
class Solution {
    public int minimumOperations(int[] nums, int start, int goal) {
        Deque<Integer> q = new ArrayDeque<>();
        q.offer(start);
        boolean[] vis = new boolean[1001];
        int ans = 0;
        while (!q.isEmpty()) {
            ++ans;
            for (int n = q.size(); n > 0; --n) {
                int x = q.poll();
                for (int y : next(nums, x)) {
                    if (y == goal) {
                        return ans;
                    }
                    if (y >= 0 && y <= 1000 && !vis[y]) {
                        vis[y] = true;
                        q.offer(y);
                    }
                }
            }
        }
        return -1;
    }

    private List<Integer> next(int[] nums, int x) {
        List<Integer> res = new ArrayList<>();
        for (int num : nums) {
            res.add(x + num);
            res.add(x - num);
            res.add(x ^ num);
        }
        return res;
    }
}

双向 BFS:

class Solution {
    private int[] nums;

    public int minimumOperations(int[] nums, int start, int goal) {
        this.nums = nums;
        Map<Integer, Integer> m1 = new HashMap<>();
        Map<Integer, Integer> m2 = new HashMap<>();
        Deque<Integer> q1 = new ArrayDeque<>();
        Deque<Integer> q2 = new ArrayDeque<>();
        m1.put(start, 0);
        m2.put(goal, 0);
        q1.offer(start);
        q2.offer(goal);
        while (!q1.isEmpty() && !q2.isEmpty()) {
            int t = q1.size() <= q2.size() ? extend(m1, m2, q1) : extend(m2, m1, q2);
            if (t != -1) {
                return t;
            }
        }
        return -1;
    }

    private int extend(Map<Integer, Integer> m1, Map<Integer, Integer> m2, Deque<Integer> q) {
        for (int i = q.size(); i > 0; --i) {
            int x = q.poll();
            int step = m1.get(x);
            for (int y : next(x)) {
                if (m1.containsKey(y)) {
                    continue;
                }
                if (m2.containsKey(y)) {
                    return step + 1 + m2.get(y);
                }
                if (y >= 0 && y <= 1000) {
                    m1.put(y, step + 1);
                    q.offer(y);
                }
            }
        }
        return -1;
    }

    private List<Integer> next(int x) {
        List<Integer> res = new ArrayList<>();
        for (int num : nums) {
            res.add(x + num);
            res.add(x - num);
            res.add(x ^ num);
        }
        return res;
    }
}

C++

class Solution {
public:
    int minimumOperations(vector<int>& nums, int start, int goal) {
        using pii = pair<int, int>;
        vector<function<int(int, int)>> ops{
            [](int x, int y) { return x + y; },
            [](int x, int y) { return x - y; },
            [](int x, int y) { return x ^ y; },
        };
        vector<bool> vis(1001, false);
        queue<pii> q;
        q.push({start, 0});
        while (!q.empty()) {
            auto [x, step] = q.front();
            q.pop();
            for (int num : nums) {
                for (auto op : ops) {
                    int nx = op(x, num);
                    if (nx == goal) {
                        return step + 1;
                    }
                    if (nx >= 0 && nx <= 1000 && !vis[nx]) {
                        q.push({nx, step + 1});
                        vis[nx] = true;
                    }
                }
            }
        }
        return -1;
    }
};
class Solution {
public:
    int minimumOperations(vector<int>& nums, int start, int goal) {
        queue<int> q{{start}};
        vector<bool> vis(1001);
        int ans = 0;
        while (!q.empty()) {
            ++ans;
            for (int n = q.size(); n > 0; --n) {
                int x = q.front();
                q.pop();
                for (int y : next(nums, x)) {
                    if (y == goal) return ans;
                    if (y >= 0 && y <= 1000 && !vis[y]) {
                        vis[y] = true;
                        q.push(y);
                    }
                }
            }
        }
        return -1;
    }

    vector<int> next(vector<int>& nums, int x) {
        vector<int> res;
        for (int num : nums) {
            res.push_back(x + num);
            res.push_back(x - num);
            res.push_back(x ^ num);
        }
        return res;
    }
};

双向 BFS:

class Solution {
public:
    int minimumOperations(vector<int>& nums, int start, int goal) {
        unordered_map<int, int> m1;
        unordered_map<int, int> m2;
        m1[start] = 0;
        m2[goal] = 0;
        queue<int> q1{{start}};
        queue<int> q2{{goal}};
        while (!q1.empty() && !q2.empty()) {
            int t = q1.size() <= q2.size() ? extend(m1, m2, q1, nums) : extend(m2, m1, q2, nums);
            if (t != -1) return t;
        }
        return -1;
    }

    int extend(unordered_map<int, int>& m1, unordered_map<int, int>& m2, queue<int>& q, vector<int>& nums) {
        for (int i = q.size(); i > 0; --i) {
            int x = q.front();
            int step = m1[x];
            q.pop();
            for (int y : next(nums, x)) {
                if (m1.count(y)) continue;
                if (m2.count(y)) return step + 1 + m2[y];
                if (y >= 0 && y <= 1000) {
                    m1[y] = step + 1;
                    q.push(y);
                }
            }
        }
        return -1;
    }

    vector<int> next(vector<int>& nums, int x) {
        vector<int> res;
        for (int num : nums) {
            res.push_back(x + num);
            res.push_back(x - num);
            res.push_back(x ^ num);
        }
        return res;
    }
};

Go

func minimumOperations(nums []int, start int, goal int) int {
	type pair struct {
		x    int
		step int
	}

	ops := []func(int, int) int{
		func(x, y int) int { return x + y },
		func(x, y int) int { return x - y },
		func(x, y int) int { return x ^ y },
	}
	vis := make([]bool, 1001)
	q := []pair{{start, 0}}

	for len(q) > 0 {
		x, step := q[0].x, q[0].step
		q = q[1:]
		for _, num := range nums {
			for _, op := range ops {
				nx := op(x, num)
				if nx == goal {
					return step + 1
				}
				if nx >= 0 && nx <= 1000 && !vis[nx] {
					q = append(q, pair{nx, step + 1})
					vis[nx] = true
				}
			}
		}
	}
	return -1
}
func minimumOperations(nums []int, start int, goal int) int {
	next := func(x int) []int {
		var res []int
		for _, num := range nums {
			res = append(res, []int{x + num, x - num, x ^ num}...)
		}
		return res
	}
	q := []int{start}
	vis := make([]bool, 1001)
	ans := 0
	for len(q) > 0 {
		ans++
		for n := len(q); n > 0; n-- {
			x := q[0]
			q = q[1:]
			for _, y := range next(x) {
				if y == goal {
					return ans
				}
				if y >= 0 && y <= 1000 && !vis[y] {
					vis[y] = true
					q = append(q, y)
				}
			}
		}
	}
	return -1
}

双向 BFS:

func minimumOperations(nums []int, start int, goal int) int {
	next := func(x int) []int {
		var res []int
		for _, num := range nums {
			res = append(res, []int{x + num, x - num, x ^ num}...)
		}
		return res
	}
	m1, m2 := map[int]int{start: 0}, map[int]int{goal: 0}
	q1, q2 := []int{start}, []int{goal}
	extend := func() int {
		for i := len(q1); i > 0; i-- {
			x := q1[0]
			q1 = q1[1:]
			step, _ := m1[x]
			for _, y := range next(x) {
				if _, ok := m1[y]; ok {
					continue
				}
				if v, ok := m2[y]; ok {
					return step + 1 + v
				}
				if y >= 0 && y <= 1000 {
					m1[y] = step + 1
					q1 = append(q1, y)
				}
			}
		}
		return -1
	}
	for len(q1) > 0 && len(q2) > 0 {
		if len(q1) > len(q2) {
			m1, m2 = m2, m1
			q1, q2 = q2, q1
		}
		t := extend()
		if t != -1 {
			return t
		}
	}
	return -1
}

TypeScript

function minimumOperations(nums: number[], start: number, goal: number): number {
    const n = nums.length;
    const op1 = function (x: number, y: number): number {
        return x + y;
    };
    const op2 = function (x: number, y: number): number {
        return x - y;
    };
    const op3 = function (x: number, y: number): number {
        return x ^ y;
    };
    const ops = [op1, op2, op3];
    let vis = new Array(1001).fill(false);
    let quenue: Array<Array<number>> = [[start, 0]];
    vis[start] = true;
    while (quenue.length) {
        let [x, step] = quenue.shift();
        for (let i = 0; i < n; i++) {
            for (let j = 0; j < ops.length; j++) {
                const nx = ops[j](x, nums[i]);
                if (nx == goal) {
                    return step + 1;
                }
                if (nx >= 0 && nx <= 1000 && !vis[nx]) {
                    vis[nx] = true;
                    quenue.push([nx, step + 1]);
                }
            }
        }
    }
    return -1;
}

...