Skip to content

Latest commit

 

History

History
426 lines (371 loc) · 12.9 KB

File metadata and controls

426 lines (371 loc) · 12.9 KB

English Version

题目描述

给你一个大小为 m x n 的整数矩阵 isWater ,它代表了一个由 陆地 和 水域 单元格组成的地图。

  • 如果 isWater[i][j] == 0 ,格子 (i, j) 是一个 陆地 格子。
  • 如果 isWater[i][j] == 1 ,格子 (i, j) 是一个 水域 格子。

你需要按照如下规则给每个单元格安排高度:

  • 每个格子的高度都必须是非负的。
  • 如果一个格子是 水域 ,那么它的高度必须为 0 。
  • 任意相邻的格子高度差 至多 为 1 。当两个格子在正东、南、西、北方向上相互紧挨着,就称它们为相邻的格子。(也就是说它们有一条公共边)

找到一种安排高度的方案,使得矩阵中的最高高度值 最大 。

请你返回一个大小为 m x n 的整数矩阵 height ,其中 height[i][j] 是格子 (i, j) 的高度。如果有多种解法,请返回 任意一个 。

 

示例 1:

输入:isWater = [[0,1],[0,0]]
输出:[[1,0],[2,1]]
解释:上图展示了给各个格子安排的高度。
蓝色格子是水域格,绿色格子是陆地格。

示例 2:

输入:isWater = [[0,0,1],[1,0,0],[0,0,0]]
输出:[[1,1,0],[0,1,1],[1,2,2]]
解释:所有安排方案中,最高可行高度为 2 。
任意安排方案中,只要最高高度为 2 且符合上述规则的,都为可行方案。

 

提示:

  • m == isWater.length
  • n == isWater[i].length
  • 1 <= m, n <= 1000
  • isWater[i][j] 要么是 0 ,要么是 1 。
  • 至少有 1 个水域格子。

解法

方法一:BFS

根据题目描述,水域的高度必须是 $0$,而任意相邻格子的高度差至多为 $1$。因此,我们可以从所有水域格子出发,用 BFS 搜索相邻且未访问过的格子,将其高度置为当前格子的高度再加一。

最后返回结果矩阵即可。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别是整数矩阵 isWater 的行数和列数。

Python3

class Solution:
    def highestPeak(self, isWater: List[List[int]]) -> List[List[int]]:
        m, n = len(isWater), len(isWater[0])
        ans = [[-1] * n for _ in range(m)]
        q = deque()
        for i, row in enumerate(isWater):
            for j, v in enumerate(row):
                if v:
                    q.append((i, j))
                    ans[i][j] = 0
        while q:
            i, j = q.popleft()
            for a, b in pairwise((-1, 0, 1, 0, -1)):
                x, y = i + a, j + b
                if 0 <= x < m and 0 <= y < n and ans[x][y] == -1:
                    ans[x][y] = ans[i][j] + 1
                    q.append((x, y))
        return ans
class Solution:
    def highestPeak(self, isWater: List[List[int]]) -> List[List[int]]:
        m, n = len(isWater), len(isWater[0])
        ans = [[-1] * n for _ in range(m)]
        q = deque()
        for i, row in enumerate(isWater):
            for j, v in enumerate(row):
                if v:
                    q.append((i, j))
                    ans[i][j] = 0
        while q:
            for _ in range(len(q)):
                i, j = q.popleft()
                for a, b in pairwise((-1, 0, 1, 0, -1)):
                    x, y = i + a, j + b
                    if 0 <= x < m and 0 <= y < n and ans[x][y] == -1:
                        ans[x][y] = ans[i][j] + 1
                        q.append((x, y))
        return ans

Java

class Solution {
    public int[][] highestPeak(int[][] isWater) {
        int m = isWater.length, n = isWater[0].length;
        int[][] ans = new int[m][n];
        Deque<int[]> q = new ArrayDeque<>();
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                ans[i][j] = isWater[i][j] - 1;
                if (ans[i][j] == 0) {
                    q.offer(new int[] {i, j});
                }
            }
        }
        int[] dirs = {-1, 0, 1, 0, -1};
        while (!q.isEmpty()) {
            var p = q.poll();
            int i = p[0], j = p[1];
            for (int k = 0; k < 4; ++k) {
                int x = i + dirs[k], y = j + dirs[k + 1];
                if (x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1) {
                    ans[x][y] = ans[i][j] + 1;
                    q.offer(new int[] {x, y});
                }
            }
        }
        return ans;
    }
}
class Solution {
    public int[][] highestPeak(int[][] isWater) {
        int m = isWater.length, n = isWater[0].length;
        int[][] ans = new int[m][n];
        Deque<int[]> q = new ArrayDeque<>();
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                ans[i][j] = isWater[i][j] - 1;
                if (ans[i][j] == 0) {
                    q.offer(new int[] {i, j});
                }
            }
        }
        int[] dirs = {-1, 0, 1, 0, -1};
        while (!q.isEmpty()) {
            for (int t = q.size(); t > 0; --t) {
                var p = q.poll();
                int i = p[0], j = p[1];
                for (int k = 0; k < 4; ++k) {
                    int x = i + dirs[k], y = j + dirs[k + 1];
                    if (x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1) {
                        ans[x][y] = ans[i][j] + 1;
                        q.offer(new int[] {x, y});
                    }
                }
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    const int dirs[5] = {-1, 0, 1, 0, -1};

    vector<vector<int>> highestPeak(vector<vector<int>>& isWater) {
        int m = isWater.size(), n = isWater[0].size();
        vector<vector<int>> ans(m, vector<int>(n));
        queue<pair<int, int>> q;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                ans[i][j] = isWater[i][j] - 1;
                if (ans[i][j] == 0) {
                    q.emplace(i, j);
                }
            }
        }
        while (!q.empty()) {
            auto [i, j] = q.front();
            q.pop();
            for (int k = 0; k < 4; ++k) {
                int x = i + dirs[k], y = j + dirs[k + 1];
                if (x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1) {
                    ans[x][y] = ans[i][j] + 1;
                    q.emplace(x, y);
                }
            }
        }
        return ans;
    }
};
class Solution {
public:
    const int dirs[5] = {-1, 0, 1, 0, -1};

    vector<vector<int>> highestPeak(vector<vector<int>>& isWater) {
        int m = isWater.size(), n = isWater[0].size();
        vector<vector<int>> ans(m, vector<int>(n));
        queue<pair<int, int>> q;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                ans[i][j] = isWater[i][j] - 1;
                if (ans[i][j] == 0) {
                    q.emplace(i, j);
                }
            }
        }
        while (!q.empty()) {
            for (int t = q.size(); t; --t) {
                auto [i, j] = q.front();
                q.pop();
                for (int k = 0; k < 4; ++k) {
                    int x = i + dirs[k], y = j + dirs[k + 1];
                    if (x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1) {
                        ans[x][y] = ans[i][j] + 1;
                        q.emplace(x, y);
                    }
                }
            }
        }
        return ans;
    }
};

Rust

use std::collections::VecDeque;

impl Solution {
    #[allow(dead_code)]
    pub fn highest_peak(is_water: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
        let n = is_water.len();
        let m = is_water[0].len();
        let mut ret_vec = vec![vec![-1; m]; n];
        let mut q: VecDeque<(usize, usize)> = VecDeque::new();
        let vis_pair: Vec<(i32, i32)> = vec![(-1, 0), (1, 0), (0, -1), (0, 1)];

        // Initialize the return vector
        for i in 0..n {
            for j in 0..m {
                if is_water[i][j] == 1 {
                    // This cell is water, the height of which must be 0
                    ret_vec[i][j] = 0;
                    q.push_back((i, j));
                }
            }
        }

        while !q.is_empty() {
            // Get the front X-Y Coordinates
            let (x, y) = q.front().unwrap().clone();
            q.pop_front();
            // Traverse through the vis pair
            for d in &vis_pair {
                let (dx, dy) = *d;
                if Self::check_bounds((x as i32) + dx, (y as i32) + dy, n as i32, m as i32) {
                    if ret_vec[((x as i32) + dx) as usize][((y as i32) + dy) as usize] == -1 {
                        // This cell hasn't been visited, update its height
                        ret_vec[((x as i32) + dx) as usize][((y as i32) + dy) as usize] =
                            ret_vec[x][y] + 1;
                        // Enqueue the current cell
                        q.push_back((((x as i32) + dx) as usize, ((y as i32) + dy) as usize));
                    }
                }
            }
        }

        ret_vec
    }

    #[allow(dead_code)]
    fn check_bounds(i: i32, j: i32, n: i32, m: i32) -> bool {
        i >= 0 && i < n && j >= 0 && j < m
    }
}

Go

func highestPeak(isWater [][]int) [][]int {
	m, n := len(isWater), len(isWater[0])
	ans := make([][]int, m)
	type pair struct{ i, j int }
	q := []pair{}
	for i, row := range isWater {
		ans[i] = make([]int, n)
		for j, v := range row {
			ans[i][j] = v - 1
			if v == 1 {
				q = append(q, pair{i, j})
			}
		}
	}
	dirs := []int{-1, 0, 1, 0, -1}
	for len(q) > 0 {
		p := q[0]
		q = q[1:]
		i, j := p.i, p.j
		for k := 0; k < 4; k++ {
			x, y := i+dirs[k], j+dirs[k+1]
			if x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1 {
				ans[x][y] = ans[i][j] + 1
				q = append(q, pair{x, y})
			}
		}
	}
	return ans
}
func highestPeak(isWater [][]int) [][]int {
	m, n := len(isWater), len(isWater[0])
	ans := make([][]int, m)
	type pair struct{ i, j int }
	q := []pair{}
	for i, row := range isWater {
		ans[i] = make([]int, n)
		for j, v := range row {
			ans[i][j] = v - 1
			if v == 1 {
				q = append(q, pair{i, j})
			}
		}
	}
	dirs := []int{-1, 0, 1, 0, -1}
	for len(q) > 0 {
		for t := len(q); t > 0; t-- {
			p := q[0]
			q = q[1:]
			i, j := p.i, p.j
			for k := 0; k < 4; k++ {
				x, y := i+dirs[k], j+dirs[k+1]
				if x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1 {
					ans[x][y] = ans[i][j] + 1
					q = append(q, pair{x, y})
				}
			}
		}
	}
	return ans
}

TypeScript

function highestPeak(isWater: number[][]): number[][] {
    const m = isWater.length;
    const n = isWater[0].length;
    let ans: number[][] = [];
    let q: number[][] = [];
    for (let i = 0; i < m; ++i) {
        ans.push(new Array(n).fill(-1));
        for (let j = 0; j < n; ++j) {
            if (isWater[i][j]) {
                q.push([i, j]);
                ans[i][j] = 0;
            }
        }
    }
    const dirs = [-1, 0, 1, 0, -1];
    while (q.length) {
        let tq: number[][] = [];
        for (const [i, j] of q) {
            for (let k = 0; k < 4; k++) {
                const [x, y] = [i + dirs[k], j + dirs[k + 1]];
                if (x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1) {
                    tq.push([x, y]);
                    ans[x][y] = ans[i][j] + 1;
                }
            }
        }
        q = tq;
    }
    return ans;
}

...