给你一个 只包含正整数 的 非空 数组 nums
。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
示例 1:
输入:nums = [1,5,11,5] 输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11] 。
示例 2:
输入:nums = [1,2,3,5] 输出:false 解释:数组不能分割成两个元素和相等的子集。
提示:
1 <= nums.length <= 200
1 <= nums[i] <= 100
方法一:动态规划
我们先计算出数组的总和
我们定义
考虑
最终答案为
注意到
时间复杂度
class Solution:
def canPartition(self, nums: List[int]) -> bool:
m, mod = divmod(sum(nums), 2)
if mod:
return False
n = len(nums)
f = [[False] * (m + 1) for _ in range(n + 1)]
f[0][0] = True
for i, x in enumerate(nums, 1):
for j in range(m + 1):
f[i][j] = f[i - 1][j] or (j >= x and f[i - 1][j - x])
return f[n][m]
class Solution:
def canPartition(self, nums: List[int]) -> bool:
m, mod = divmod(sum(nums), 2)
if mod:
return False
f = [True] + [False] * m
for x in nums:
for j in range(m, x - 1, -1):
f[j] = f[j] or f[j - x]
return f[m]
class Solution {
public boolean canPartition(int[] nums) {
// int s = Arrays.stream(nums).sum();
int s = 0;
for (int x : nums) {
s += x;
}
if (s % 2 == 1) {
return false;
}
int n = nums.length;
int m = s >> 1;
boolean[][] f = new boolean[n + 1][m + 1];
f[0][0] = true;
for (int i = 1; i <= n; ++i) {
int x = nums[i - 1];
for (int j = 0; j <= m; ++j) {
f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
}
}
return f[n][m];
}
}
class Solution {
public boolean canPartition(int[] nums) {
// int s = Arrays.stream(nums).sum();
int s = 0;
for (int x : nums) {
s += x;
}
if (s % 2 == 1) {
return false;
}
int m = s >> 1;
boolean[] f = new boolean[m + 1];
f[0] = true;
for (int x : nums) {
for (int j = m; j >= x; --j) {
f[j] |= f[j - x];
}
}
return f[m];
}
}
class Solution {
public:
bool canPartition(vector<int>& nums) {
int s = accumulate(nums.begin(), nums.end(), 0);
if (s % 2 == 1) {
return false;
}
int n = nums.size();
int m = s >> 1;
bool f[n + 1][m + 1];
memset(f, false, sizeof(f));
f[0][0] = true;
for (int i = 1; i <= n; ++i) {
int x = nums[i - 1];
for (int j = 0; j <= m; ++j) {
f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
}
}
return f[n][m];
}
};
class Solution {
public:
bool canPartition(vector<int>& nums) {
int s = accumulate(nums.begin(), nums.end(), 0);
if (s % 2 == 1) {
return false;
}
int m = s >> 1;
bool f[m + 1];
memset(f, false, sizeof(f));
f[0] = true;
for (int& x : nums) {
for (int j = m; j >= x; --j) {
f[j] |= f[j - x];
}
}
return f[m];
}
};
impl Solution {
#[allow(dead_code)]
pub fn can_partition(nums: Vec<i32>) -> bool {
let mut sum = 0;
for e in &nums {
sum += *e;
}
if sum % 2 != 0 {
return false;
}
let n = nums.len();
let m = (sum / 2) as usize;
let mut dp: Vec<Vec<bool>> = vec![vec![false; m + 1]; n + 1];
// Initialize the dp vector
dp[0][0] = true;
// Begin the actual dp process
for i in 1..=n {
for j in 0..=m {
dp[i][j] = if (nums[i - 1] as usize) > j {
dp[i - 1][j]
} else {
dp[i - 1][j] || dp[i - 1][j - (nums[i - 1] as usize)]
};
}
}
dp[n][m]
}
}
impl Solution {
#[allow(dead_code)]
pub fn can_partition(nums: Vec<i32>) -> bool {
let mut sum = 0;
for e in &nums {
sum += *e;
}
if sum % 2 != 0 {
return false;
}
let m = (sum >> 1) as usize;
// Here dp[i] means if it can be sum up to `i` for all the number we've traversed through so far
// Which is actually compressing the 2-D dp vector to 1-D
let mut dp: Vec<bool> = vec![false; m + 1];
// Initialize the dp vector
dp[0] = true;
// Begin the actual dp process
for e in &nums {
// For every num in nums vector
for i in (*e as usize..=m).rev() {
// Update the current status
dp[i] |= dp[i - (*e as usize)];
}
}
dp[m]
}
}
func canPartition(nums []int) bool {
s := 0
for _, x := range nums {
s += x
}
if s%2 == 1 {
return false
}
n, m := len(nums), s>>1
f := make([][]bool, n+1)
for i := range f {
f[i] = make([]bool, m+1)
}
f[0][0] = true
for i := 1; i <= n; i++ {
x := nums[i-1]
for j := 0; j <= m; j++ {
f[i][j] = f[i-1][j] || (j >= x && f[i-1][j-x])
}
}
return f[n][m]
}
func canPartition(nums []int) bool {
s := 0
for _, x := range nums {
s += x
}
if s%2 == 1 {
return false
}
m := s >> 1
f := make([]bool, m+1)
f[0] = true
for _, x := range nums {
for j := m; j >= x; j-- {
f[j] = f[j] || f[j-x]
}
}
return f[m]
}
function canPartition(nums: number[]): boolean {
const s = nums.reduce((a, b) => a + b, 0);
if (s % 2 === 1) {
return false;
}
const n = nums.length;
const m = s >> 1;
const f: boolean[][] = Array(n + 1)
.fill(0)
.map(() => Array(m + 1).fill(false));
f[0][0] = true;
for (let i = 1; i <= n; ++i) {
const x = nums[i - 1];
for (let j = 0; j <= m; ++j) {
f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
}
}
return f[n][m];
}
function canPartition(nums: number[]): boolean {
const s = nums.reduce((a, b) => a + b, 0);
if (s % 2 === 1) {
return false;
}
const m = s >> 1;
const f: boolean[] = Array(m + 1).fill(false);
f[0] = true;
for (const x of nums) {
for (let j = m; j >= x; --j) {
f[j] = f[j] || f[j - x];
}
}
return f[m];
}
/**
* @param {number[]} nums
* @return {boolean}
*/
var canPartition = function (nums) {
const s = nums.reduce((a, b) => a + b, 0);
if (s % 2 === 1) {
return false;
}
const n = nums.length;
const m = s >> 1;
const f = Array(n + 1)
.fill(0)
.map(() => Array(m + 1).fill(false));
f[0][0] = true;
for (let i = 1; i <= n; ++i) {
const x = nums[i - 1];
for (let j = 0; j <= m; ++j) {
f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
}
}
return f[n][m];
};
/**
* @param {number[]} nums
* @return {boolean}
*/
var canPartition = function (nums) {
const s = nums.reduce((a, b) => a + b, 0);
if (s % 2 === 1) {
return false;
}
const m = s >> 1;
const f = Array(m + 1).fill(false);
f[0] = true;
for (const x of nums) {
for (let j = m; j >= x; --j) {
f[j] = f[j] || f[j - x];
}
}
return f[m];
};