Skip to content

Latest commit

 

History

History
216 lines (169 loc) · 4.73 KB

File metadata and controls

216 lines (169 loc) · 4.73 KB

题目描述

给定两个整数 ab ,求它们的除法的商 a/b ,要求不得使用乘号 '*'、除号 '/' 以及求余符号 '%' 。

 

注意:

  • 整数除法的结果应当截去(truncate)其小数部分,例如:truncate(8.345) = 8 以及 truncate(-2.7335) = -2
  • 假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231, 231−1]。本题中,如果除法结果溢出,则返回 231 − 1

 

示例 1:

输入:a = 15, b = 2
输出:7
解释:15/2 = truncate(7.5) = 7

示例 2:

输入:a = 7, b = -3
输出:-2
解释:7/-3 = truncate(-2.33333..) = -2

示例 3:

输入:a = 0, b = 1
输出:0

示例 4:

输入:a = 1, b = 1
输出:1

 

提示:

  • -231 <= a, b <= 231 - 1
  • b != 0

 

注意:本题与主站 29 题相同:https://leetcode.cn/problems/divide-two-integers/

 

解法

通过下面这段伪代码,不难理解除法本质上就是减法,但是一次循环只能做一次减法,效率太低会导致超时,所以再加上快速幂的思想优化即可

sign = -1 if a * b < 0 else 1
a = abs(a)
b = abs(b)
cnt = 0
while a >= b:
    a -= b
    cnt += 1
return sign * cnt

Python3

class Solution:
    def divide(self, a: int, b: int) -> int:
        INT_MAX = (1 << 31) - 1
        INT_MIN = -(1 << 31)
        sign = -1 if a * b < 0 else 1
        a = abs(a)
        b = abs(b)
        tot = 0
        while a >= b:
            cnt = 0
            while a >= (b << (cnt + 1)):
                cnt += 1
            tot += 1 << cnt
            a -= b << cnt
        return sign * tot if INT_MIN <= sign * tot <= INT_MAX else INT_MAX

Java

class Solution {
    public int divide(int a, int b) {
        int sign = 1;
        if ((a < 0) != (b < 0)) {
            sign = -1;
        }
        long x = abs(a);
        long y = abs(b);
        long tot = 0;
        while (x >= y) {
            int cnt = 0;
            while (x >= (y << (cnt + 1))) {
                cnt++;
            }
            tot += 1L << cnt;
            x -= y << cnt;
        }
        long ans = sign * tot;
        if (ans >= Integer.MIN_VALUE && ans <= Integer.MAX_VALUE) {
            return (int) ans;
        }
        return Integer.MAX_VALUE;
    }

    private long abs(long a) {
        if (a < 0) {
            return -a;
        }
        return a;
    }
}

Go

func divide(a int, b int) int {
	sign := 1
	if a*b < 0 {
		sign = -1
	}

	a = abs(a)
	b = abs(b)

	tot := 0
	for a >= b {
		cnt := 0
		for a >= (b << (cnt + 1)) {
			cnt++
		}
		tot += 1 << cnt
		a -= b << cnt
	}

	ans := sign * tot
	if ans >= math.MinInt32 && ans <= math.MaxInt32 {
		return ans
	}
	return math.MaxInt32
}

func abs(a int) int {
	if a < 0 {
		return -a
	}
	return a
}

C++

class Solution {
public:
    int divide(int a, int b) {
        int sign = 1;
        if (a < 0 ^ b < 0) {
            sign = -1;
        }

        auto x = abs(static_cast<long long>(a));
        auto y = abs(static_cast<long long>(b));
        auto tot = 0ll;
        while (x >= y) {
            int cnt = 0;
            while (x >= (y << (cnt + 1))) {
                ++cnt;
            }
            tot += 1ll << cnt;
            x -= y << cnt;
        }

        auto ans = sign * tot;
        if (ans >= INT32_MIN && ans <= INT32_MAX) {
            return static_cast<int>(ans);
        }
        return INT32_MAX;
    }
};

...