给定两个整数 a
和 b
,求它们的除法的商 a/b
,要求不得使用乘号 '*'
、除号 '/'
以及求余符号 '%'
。
注意:
- 整数除法的结果应当截去(
truncate
)其小数部分,例如:truncate(8.345) = 8
以及truncate(-2.7335) = -2
- 假设我们的环境只能存储 32 位有符号整数,其数值范围是
[−231, 231−1]
。本题中,如果除法结果溢出,则返回231 − 1
示例 1:
输入:a = 15, b = 2
输出:7
解释:15/2 = truncate(7.5) = 7
示例 2:
输入:a = 7, b = -3 输出:-2 解释:7/-3 = truncate(-2.33333..) = -2
示例 3:
输入:a = 0, b = 1
输出:0
示例 4:
输入:a = 1, b = 1
输出:1
提示:
-231 <= a, b <= 231 - 1
b != 0
注意:本题与主站 29 题相同:https://leetcode.cn/problems/divide-two-integers/
通过下面这段伪代码,不难理解除法本质上就是减法,但是一次循环只能做一次减法,效率太低会导致超时,所以再加上快速幂的思想优化即可
sign = -1 if a * b < 0 else 1
a = abs(a)
b = abs(b)
cnt = 0
while a >= b:
a -= b
cnt += 1
return sign * cnt
class Solution:
def divide(self, a: int, b: int) -> int:
INT_MAX = (1 << 31) - 1
INT_MIN = -(1 << 31)
sign = -1 if a * b < 0 else 1
a = abs(a)
b = abs(b)
tot = 0
while a >= b:
cnt = 0
while a >= (b << (cnt + 1)):
cnt += 1
tot += 1 << cnt
a -= b << cnt
return sign * tot if INT_MIN <= sign * tot <= INT_MAX else INT_MAX
class Solution {
public int divide(int a, int b) {
int sign = 1;
if ((a < 0) != (b < 0)) {
sign = -1;
}
long x = abs(a);
long y = abs(b);
long tot = 0;
while (x >= y) {
int cnt = 0;
while (x >= (y << (cnt + 1))) {
cnt++;
}
tot += 1L << cnt;
x -= y << cnt;
}
long ans = sign * tot;
if (ans >= Integer.MIN_VALUE && ans <= Integer.MAX_VALUE) {
return (int) ans;
}
return Integer.MAX_VALUE;
}
private long abs(long a) {
if (a < 0) {
return -a;
}
return a;
}
}
func divide(a int, b int) int {
sign := 1
if a*b < 0 {
sign = -1
}
a = abs(a)
b = abs(b)
tot := 0
for a >= b {
cnt := 0
for a >= (b << (cnt + 1)) {
cnt++
}
tot += 1 << cnt
a -= b << cnt
}
ans := sign * tot
if ans >= math.MinInt32 && ans <= math.MaxInt32 {
return ans
}
return math.MaxInt32
}
func abs(a int) int {
if a < 0 {
return -a
}
return a
}
class Solution {
public:
int divide(int a, int b) {
int sign = 1;
if (a < 0 ^ b < 0) {
sign = -1;
}
auto x = abs(static_cast<long long>(a));
auto y = abs(static_cast<long long>(b));
auto tot = 0ll;
while (x >= y) {
int cnt = 0;
while (x >= (y << (cnt + 1))) {
++cnt;
}
tot += 1ll << cnt;
x -= y << cnt;
}
auto ans = sign * tot;
if (ans >= INT32_MIN && ans <= INT32_MAX) {
return static_cast<int>(ans);
}
return INT32_MAX;
}
};