-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrun.py
208 lines (177 loc) · 8.76 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import argparse
import logging
import sys
sys.path.append("..")
import torch
import numpy as np
import random
from torchvision import transforms
from torch.utils.data import DataLoader
from models.bert_model import HMNeTREModel, HMNeTNERModel
from processor.dataset import MMREProcessor, MMPNERProcessor, MMREDataset, MMPNERDataset
from modules.train import RETrainer, NERTrainer
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# from tensorboardX import SummaryWriter
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
'MRE': HMNeTREModel,
'twitter15': HMNeTNERModel,
'twitter17': HMNeTNERModel
}
TRAINER_CLASSES = {
'MRE': RETrainer,
'twitter15': NERTrainer,
'twitter17': NERTrainer
}
DATA_PROCESS = {
'MRE': (MMREProcessor, MMREDataset),
'twitter15': (MMPNERProcessor, MMPNERDataset),
'twitter17': (MMPNERProcessor, MMPNERDataset)
}
DATA_PATH = {
'MRE': {
# text data
'train': 'data/RE_data/txt/ours_train.txt',
'dev': 'data/RE_data/txt/ours_val.txt',
'test': 'data/RE_data/txt/ours_test.txt',
# {data_id : object_crop_img_path}
'train_auximgs': 'data/RE_data/txt/mre_train_dict.pth',
'dev_auximgs': 'data/RE_data/txt/mre_dev_dict.pth',
'test_auximgs': 'data/RE_data/txt/mre_test_dict.pth',
# relation json data
're_path': 'data/RE_data/ours_rel2id.json'
},
'twitter15': {
# text data
'train': 'data/NER_data/twitter2015/train.txt',
'dev': 'data/NER_data/twitter2015/valid.txt',
'test': 'data/NER_data/twitter2015/test.txt',
# {data_id : object_crop_img_path}
'train_auximgs': 'data/NER_data/twitter2015/twitter2015_train_dict.pth',
'dev_auximgs': 'data/NER_data/twitter2015/twitter2015_val_dict.pth',
'test_auximgs': 'data/NER_data/twitter2015/twitter2015_test_dict.pth'
},
'twitter17': {
# text data
'train': 'data/NER_data/twitter2017/train.txt',
'dev': 'data/NER_data/twitter2017/valid.txt',
'test': 'data/NER_data/twitter2017/test.txt',
# {data_id : object_crop_img_path}
'train_auximgs': 'data/NER_data/twitter2017/twitter2017_train_dict.pth',
'dev_auximgs': 'data/NER_data/twitter2017/twitter2017_val_dict.pth',
'test_auximgs': 'data/NER_data/twitter2017/twitter2017_test_dict.pth'
},
}
# image data
IMG_PATH = {
'MRE': {'train': 'data/RE_data/img_org/train/',
'dev': 'data/RE_data/img_org/val/',
'test': 'data/RE_data/img_org/test'},
'twitter15': 'data/NER_data/twitter2015_images',
'twitter17': 'data/NER_data/twitter2017_images',
}
# auxiliary images
AUX_PATH = {
'MRE':{
'train': 'data/RE_data/img_vg/train/crops',
'dev': 'data/RE_data/img_vg/val/crops',
'test': 'data/RE_data/img_vg/test/crops'
},
'twitter15': {
'train': 'data/NER_data/twitter2015_aux_images/train/crops',
'dev': 'data/NER_data/twitter2015_aux_images/val/crops',
'test': 'data/NER_data/twitter2015_aux_images/test/crops',
},
'twitter17': {
'train': 'data/NER_data/twitter2017_aux_images/train/crops',
'dev': 'data/NER_data/twitter2017_aux_images/val/crops',
'test': 'data/NER_data/twitter2017_aux_images/test/crops',
}
}
def set_seed(seed=2021):
"""set random seed"""
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_name', default='twitter15', type=str, help="The name of dataset.")
parser.add_argument('--bert_name', default='bert-base-uncased', type=str, help="Pretrained language model path")
parser.add_argument('--num_epochs', default=30, type=int, help="num training epochs")
parser.add_argument('--device', default='cuda', type=str, help="cuda or cpu")
parser.add_argument('--batch_size', default=32, type=int, help="batch size")
parser.add_argument('--lr', default=1e-5, type=float, help="learning rate")
parser.add_argument('--warmup_ratio', default=0.01, type=float)
parser.add_argument('--eval_begin_epoch', default=16, type=int, help="epoch to start evluate")
parser.add_argument('--seed', default=1, type=int, help="random seed, default is 1")
parser.add_argument('--prompt_len', default=10, type=int, help="prompt length")
parser.add_argument('--prompt_dim', default=800, type=int, help="mid dimension of prompt project layer")
parser.add_argument('--load_path', default=None, type=str, help="Load model from load_path")
parser.add_argument('--save_path', default=None, type=str, help="save model at save_path")
parser.add_argument('--write_path', default=None, type=str, help="do_test=True, predictions will be write in write_path")
parser.add_argument('--notes', default="", type=str, help="input some remarks for making save path dir.")
parser.add_argument('--use_prompt', action='store_true')
parser.add_argument('--do_train', action='store_true')
parser.add_argument('--only_test', action='store_true')
parser.add_argument('--max_seq', default=128, type=int)
parser.add_argument('--ignore_idx', default=-100, type=int)
parser.add_argument('--sample_ratio', default=1.0, type=float, help="only for low resource.")
args = parser.parse_args()
data_path, img_path, aux_path = DATA_PATH[args.dataset_name], IMG_PATH[args.dataset_name], AUX_PATH[args.dataset_name]
model_class, Trainer = MODEL_CLASSES[args.dataset_name], TRAINER_CLASSES[args.dataset_name]
data_process, dataset_class = DATA_PROCESS[args.dataset_name]
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
set_seed(args.seed) # set seed, default is 1
if args.save_path is not None: # make save_path dir
# args.save_path = os.path.join(args.save_path, args.dataset_name+"_"+str(args.batch_size)+"_"+str(args.lr)+"_"+args.notes)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path, exist_ok=True)
print(args)
logdir = "logs/" + args.dataset_name+ "_"+str(args.batch_size) + "_" + str(args.lr) + args.notes
# writer = SummaryWriter(logdir=logdir)
writer=None
if not args.use_prompt:
img_path, aux_path = None, None
processor = data_process(data_path, args.bert_name)
train_dataset = dataset_class(processor, transform, img_path, aux_path, args.max_seq, sample_ratio=args.sample_ratio, mode='train')
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True)
dev_dataset = dataset_class(processor, transform, img_path, aux_path, args.max_seq, mode='dev')
dev_dataloader = DataLoader(dev_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True)
test_dataset = dataset_class(processor, transform, img_path, aux_path, args.max_seq, mode='test')
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True)
if args.dataset_name == 'MRE': # RE task
re_dict = processor.get_relation_dict()
num_labels = len(re_dict)
tokenizer = processor.tokenizer
model = HMNeTREModel(num_labels, tokenizer, args=args)
trainer = Trainer(train_data=train_dataloader, dev_data=dev_dataloader, test_data=test_dataloader, model=model, processor=processor, args=args, logger=logger, writer=writer)
else: # NER task
label_mapping = processor.get_label_mapping()
label_list = list(label_mapping.keys())
model = HMNeTNERModel(label_list, args)
trainer = Trainer(train_data=train_dataloader, dev_data=dev_dataloader, test_data=test_dataloader, model=model, label_map=label_mapping, args=args, logger=logger, writer=writer)
if args.do_train:
# train
trainer.train()
# test best model
args.load_path = os.path.join(args.save_path, 'best_model.pth')
trainer.test()
if args.only_test:
# only do test
trainer.test()
torch.cuda.empty_cache()
# writer.close()
if __name__ == "__main__":
main()