-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression.py
51 lines (43 loc) · 1.72 KB
/
regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import tensorflow as tf
import input_data
import model
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
# 训练数据,自动下载,结构如下
# xs [[0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]*28] 28*28
# ys [0,0,1,0,0,0,0,0,0,0] 1*10 例数据表示2
data = input_data.read_data_sets('data', one_hot=True)
with tf.variable_scope("regression"):
# 定义输入数据参数
xs = tf.placeholder(tf.float32, [None, 784])
ys = tf.placeholder(tf.float32, [None, 10])
# 模型
y, variables = model.regression(xs)
# 计算偏差
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(cross_entropy)
# 与预测值进行比较
# argmax x=1时返回每行中最大值的索引,识别的结果集y如果下标相等则认为一样
correct_prediction = tf.equal(tf.math.argmax(y, 1), tf.math.argmax(ys, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 保存训练得到的模型
saver = tf.train.Saver(variables)
# 开始训练
with tf.Session() as sess:
# 初使化全局参数
sess.run(tf.global_variables_initializer())
for i in range(2000):
# 获取100个训练数据
batch_xs, batch_ys = data.train.next_batch(100)
if i % 100 == 0:
sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys})
# 打印出结果
result = sess.run(accuracy, feed_dict={xs: data.test.images, ys: data.test.labels})
print(i, result)
path = saver.save(
sess,
os.path.join(os.path.dirname(__file__), 'models', 'regression.ckpt'),
write_meta_graph=False,
write_state=False
)
print("Saved:", path)